D-S证据理论的基本介绍及实例

1 D-S证据理论简介

D-S证据理论,又称Dempster-Shafer理论,由A.P. Dempster于1967年提出,并由Glenn Shafer在1976年进一步发展。该理论是一种处理不确定性和不完整信息的数学工具,广泛应用于信息融合、决策分析、模式识别等领域。

1.1 基本概念

DS证据理论的核心概念包括:

  • 识别框架(Frame of Discernment):表示所有可能假设的集合,记作Θ。例如,在目标识别中,Θ可以包含所有可能的目标类型。

  • 基本概率分配(Basic Probability Assignment, BPA):也称为质量函数(mass function),记作m。对于识别框架Θ的每一个子集A,m(A)表示对A的信任程度,满足:
      m : 2 Θ → [ 0 , 1 ] , m ( ∅ ) = 0 , ∑ A ⊆ Θ m ( A ) = 1   \ m: 2^\Theta \rightarrow [0, 1], \quad m(\emptyset) = 0, \quad \sum_{A \subseteq \Theta} m(A) = 1 \  m:2Θ[0,1],m()=0,AΘm(A)=1 

  • 信任函数(Belief Function, Bel):表示对某个假设或假设集合的信任程度,定义为:
      B e l ( A ) = ∑ B ⊆ A m ( B )   \ Bel(A) = \sum_{B \subseteq A} m(B) \  Bel(A)=BAm(B) 

  • 似然函数(Plausibility Function, Pl):表示对某个假设或假设集合的不确定性程度,定义为:
      P l ( A ) = ∑ B ∩ A ≠ ∅ m ( B )   \ Pl(A) = \sum_{B \cap A \neq \emptyset} m(B) \  Pl(A)=BA=m(B) 

1.2 Dempster组合规则

当有多个证据源时,DS证据理论通过Dempster组合规则将不同证据源的信息进行融合。对于两个证据源m₁和m₂,其组合后的质量函数m₁⊕m₂定义为:
  ( m 1 ⊕ m 2 ) ( A ) = ∑ B ∩ C = A m 1 ( B ) m 2 ( C ) 1 − ∑ B ∩ C = ∅ m 1 ( B ) m 2 ( C )   \ (m_1 \oplus m_2)(A) = \frac{\sum_{B \cap C = A} m_1(B) m_2(C)}{1 - \sum_{B \cap C = \emptyset} m_1(B) m_2(C)} \  (m1m2)(A)=1BC=m1(B)m2(C)BC=Am1(B)m2(C) 
其中,分母用于归一化,确保组合后的质量函数仍然满足概率分配的条件。

1.3 DS证据理论的优势

DS证据理论相较于传统的概率论具有以下优势:

  1. 处理不确定性:能够有效处理由于信息不完整或模糊性引起的不确定性。
  2. 灵活性强:可以同时处理确定性和不确定性的信息,适用于多种复杂场景。
  3. 信息融合:通过Dempster组合规则,能够将多个证据源的信息进行有效融合,提高决策的准确性。

1.4 应用领域

DS证据理论在多个领域得到了广泛应用,包括但不限于:

  • 目标识别:通过融合多个传感器的信息,提高目标识别的准确性。
  • 故障诊断:结合多种故障特征,进行故障模式的识别与诊断。
  • 决策支持:在不确定环境下,提供科学的决策依据。

1.5 本章小结

本章简要介绍了DS证据理论的基本概念、Dempster组合规则及其优势和应用领域。作为本文的理论依据,DS证据理论为后续的研究提供了坚实的数学基础和方法论支持。

实例一

假设我们有一个识别框架Θ,表示某个目标的可能类型。设Θ = {A, B, C},其中A、B、C分别表示三种不同的目标类型。我们有两个证据源,分别提供了对目标类型的基本概率分配(BPA)。

1. 定义识别框架和基本概率分配

  • 识别框架:Θ = {A, B, C}
  • 证据源1的基本概率分配(m₁):

  m 1 ( A ) = 0.6 , m 1 ( B ) = 0.3 , m 1 ( C ) = 0.1   \ m_1(A) = 0.6, \quad m_1(B) = 0.3, \quad m_1(C) = 0.1 \  m1(A)=0.6,m1(B)=0.3,m1(C)=0.1 

  • 证据源2的基本概率分配(m₂):
      m 2 ( A ) = 0.5 , m 2 ( B ) = 0.2 , m 2 ( C ) = 0.3   \ m_2(A) = 0.5, \quad m_2(B) = 0.2, \quad m_2(C) = 0.3 \  m2(A)=0.5,m2(B)=0.2,m2(C)=0.3 

2. 计算Dempster组合规则

我们需要计算两个证据源的组合结果m₁⊕m₂。根据Dempster组合规则,首先计算所有可能的交集及其对应的质量函数乘积,然后进行归一化处理。

  • 计算交集及其质量函数乘积

    m₁ \ m₂A (0.5)B (0.2)C (0.3)
    A (0.6)A (0.3)∅ (0.12)∅ (0.18)
    B (0.3)∅ (0.15)B (0.06)∅ (0.09)
    C (0.1)∅ (0.05)∅ (0.02)C (0.03)

    其中,∅表示空集。

  • 计算归一化因子

    首先计算冲突部分(即交集为空集的部分)的总和:
      K = ∑ B ∩ C = ∅ m 1 ( B ) m 2 ( C ) = 0.12 + 0.18 + 0.15 + 0.09 + 0.05 + 0.02 = 0.61   \ K = \sum_{B \cap C = \emptyset} m_1(B) m_2(C) = 0.12 + 0.18 + 0.15 + 0.09 + 0.05 + 0.02 = 0.61 \  K=BC=m1(B)m2(C)=0.12+0.18+0.15+0.09+0.05+0.02=0.61 

    归一化因子为:
      1 − K = 1 − 0.61 = 0.39   \ 1 - K = 1 - 0.61 = 0.39 \  1K=10.61=0.39 

  • 计算组合后的质量函数

    对于每个非空交集,计算其组合后的质量函数:
      ( m 1 ⊕ m 2 ) ( A ) = m 1 ( A ) ⋅ m 2 ( A ) 1 − K = 0.3 0.39 ≈ 0.769   \ (m_1 \oplus m_2)(A) = \frac{m_1(A) \cdot m_2(A)}{1 - K} = \frac{0.3}{0.39} \approx 0.769 \  (m1m2)(A)=1Km1(A)m2(A)=0.390.30.769 
      ( m 1 ⊕ m 2 ) ( B ) = m 1 ( B ) ⋅ m 2 ( B ) 1 − K = 0.06 0.39 ≈ 0.154   \ (m_1 \oplus m_2)(B) = \frac{m_1(B) \cdot m_2(B)}{1 - K} = \frac{0.06}{0.39} \approx 0.154 \  (m1m2)(B)=1Km1(B)m2(B)=0.390.060.154 
      ( m 1 ⊕ m 2 ) ( C ) = m 1 ( C ) ⋅ m 2 ( C ) 1 − K = 0.03 0.39 ≈ 0.077   \ (m_1 \oplus m_2)(C) = \frac{m_1(C) \cdot m_2(C)}{1 - K} = \frac{0.03}{0.39} \approx 0.077 \  (m1m2)(C)=1Km1(C)m2(C)=0.390.030.077 

3. 结果

组合后的基本概率分配为:
  m 1 ⊕ m 2 ( A ) ≈ 0.769 , m 1 ⊕ m 2 ( B ) ≈ 0.154 , m 1 ⊕ m 2 ( C ) ≈ 0.077   \ m_1 \oplus m_2(A) \approx 0.769, \quad m_1 \oplus m_2(B) \approx 0.154, \quad m_1 \oplus m_2(C) \approx 0.077 \  m1m2(A)0.769,m1m2(B)0.154,m1m2(C)0.077 

4. 解释

通过Dempster组合规则,我们将两个证据源的信息进行了融合。结果显示,目标类型A的信任程度最高(约76.9%),而目标类型B和C的信任程度较低(分别为15.4%和7.7%)。这表明在融合了两个证据源的信息后,目标类型A是最有可能的。

总结

这个简单的例子展示了如何使用DS证据理论中的Dempster组合规则将多个证据源的信息进行融合,从而得出更可靠的结论。在实际应用中,DS证据理论可以处理更复杂的情况,适用于多种不确定性和信息融合的场景。

实例二

1. 场景描述

假设我们正在开发一个火灾检测系统,系统使用两个传感器来检测火灾的可能性。传感器1(如烟雾传感器)和传感器2(如温度传感器)分别提供了对火灾发生的基本概率分配(BPA)。我们的目标是融合这两个传感器的信息,判断是否发生了火灾。

2. 识别框架

定义识别框架 Θ 为:

  Θ = { F , N }   \ Θ = \{F, N\} \  Θ={F,N} 
其中:

  • F 表示“发生火灾”
  • N 表示“未发生火灾”
传感器提供的基本概率分配
  1. 传感器1(烟雾传感器) 提供的基本概率分配(m₁):
      m 1 ( F ) = 0.7 , m 1 ( N ) = 0.2 , m 1 ( Θ ) = 0.1   \ m_1(F) = 0.7, \quad m_1(N) = 0.2, \quad m_1(Θ) = 0.1 \  m1(F)=0.7,m1(N)=0.2,m1(Θ)=0.1 

    •   ( m 1 ( F ) = 0.7 ) \ (m_1(F) = 0.7 )  (m1(F)=0.7)表示传感器1认为发生火灾的概率为70%。
    •   ( m 1 ( N ) = 0.2 ) \ (m_1(N) = 0.2)  (m1(N)=0.2) 表示传感器1认为未发生火灾的概率为20%。
    •   ( m 1 ( Θ ) = 0.1 ) \ (m_1(Θ) = 0.1)  (m1(Θ)=0.1) 表示传感器1对是否发生火灾不确定的概率为10%。
  2. 传感器2(温度传感器) 提供的基本概率分配(m₂):
      m 2 ( F ) = 0.6 , m 2 ( N ) = 0.3 , m 2 ( Θ ) = 0.1   \ m_2(F) = 0.6, \quad m_2(N) = 0.3, \quad m_2(Θ) = 0.1 \  m2(F)=0.6,m2(N)=0.3,m2(Θ)=0.1 

    •   ( m 1 ( F ) = 0.6 ) \ (m_1(F) = 0.6)  (m1(F)=0.6)表示传感器2认为发生火灾的概率为60%。
    •   ( m 2 ( N ) = 0.3 ) \ (m_2(N) = 0.3)  (m2(N)=0.3) 表示传感器2认为未发生火灾的概率为30%。
    •   ( m 2 ( Θ ) = 0.1 ) \ (m_2(Θ) = 0.1)  (m2(Θ)=0.1) 表示传感器2对是否发生火灾不确定的概率为10%。

使用Dempster组合规则进行信息融合

我们需要将两个传感器的信息进行融合,计算组合后的基本概率分配 (m_1 \oplus m_2)。

1. 计算交集及其质量函数乘积

首先,列出所有可能的交集及其对应的质量函数乘积:

m₁ \ m₂F (0.6)N (0.3)Θ (0.1)
F (0.7)F (0.42)∅ (0.21)F (0.07)
N (0.2)∅ (0.12)N (0.06)N (0.02)
Θ (0.1)F (0.06)N (0.03)Θ (0.01)

其中,∅ 表示空集。

2. 计算冲突部分(K)

冲突部分是指两个传感器提供的信息完全矛盾的部分(即交集为空集的部分)。在这里,冲突部分的总和为:
  K = m 1 ( F ) ⋅ m 2 ( N ) + m 1 ( N ) ⋅ m 2 ( F ) = 0.7 × 0.3 + 0.2 × 0.6 = 0.21 + 0.12 = 0.33   \ K = m_1(F) \cdot m_2(N) + m_1(N) \cdot m_2(F) = 0.7 \times 0.3 + 0.2 \times 0.6 = 0.21 + 0.12 = 0.33 \  K=m1(F)m2(N)+m1(N)m2(F)=0.7×0.3+0.2×0.6=0.21+0.12=0.33 

3. 计算归一化因子

归一化因子为:
  1 − K = 1 − 0.33 = 0.67   \ 1 - K = 1 - 0.33 = 0.67 \  1K=10.33=0.67 

4. 计算组合后的质量函数

对于每个非空交集,计算其组合后的质量函数:
  ( m 1 ⊕ m 2 ) ( F ) = m 1 ( F ) ⋅ m 2 ( F ) + m 1 ( F ) ⋅ m 2 ( Θ ) + m 1 ( Θ ) ⋅ m 2 ( F ) 1 − K   \ (m_1 \oplus m_2)(F) = \frac{m_1(F) \cdot m_2(F) + m_1(F) \cdot m_2(Θ) + m_1(Θ) \cdot m_2(F)}{1 - K} \  (m1m2)(F)=1Km1(F)m2(F)+m1(F)m2(Θ)+m1(Θ)m2(F) 
  = 0.42 + 0.07 + 0.06 0.67 = 0.55 0.67 ≈ 0.82   \ = \frac{0.42 + 0.07 + 0.06}{0.67} = \frac{0.55}{0.67} \approx 0.82 \  =0.670.42+0.07+0.06=0.670.550.82 

  ( m 1 ⊕ m 2 ) ( N ) = m 1 ( N ) ⋅ m 2 ( N ) + m 1 ( N ) ⋅ m 2 ( Θ ) + m 1 ( Θ ) ⋅ m 2 ( N ) 1 − K   \ (m_1 \oplus m_2)(N) = \frac{m_1(N) \cdot m_2(N) + m_1(N) \cdot m_2(Θ) + m_1(Θ) \cdot m_2(N)}{1 - K} \  (m1m2)(N)=1Km1(N)m2(N)+m1(N)m2(Θ)+m1(Θ)m2(N) 
  = 0.06 + 0.02 + 0.03 0.67 = 0.11 0.67 ≈ 0.16   \ = \frac{0.06 + 0.02 + 0.03}{0.67} = \frac{0.11}{0.67} \approx 0.16 \  =0.670.06+0.02+0.03=0.670.110.16 

  ( m 1 ⊕ m 2 ) ( Θ ) = m 1 ( Θ ) ⋅ m 2 ( Θ ) 1 − K   \ (m_1 \oplus m_2)(Θ) = \frac{m_1(Θ) \cdot m_2(Θ)}{1 - K} \  (m1m2)(Θ)=1Km1(Θ)m2(Θ) 
  = 0.01 0.67 ≈ 0.02   \ = \frac{0.01}{0.67} \approx 0.02 \  =0.670.010.02 


融合结果

组合后的基本概率分配为:
  m 1 ⊕ m 2 ( F ) ≈ 0.82 , m 1 ⊕ m 2 ( N ) ≈ 0.16 , m 1 ⊕ m 2 ( Θ ) ≈ 0.02   \ m_1 \oplus m_2(F) \approx 0.82, \quad m_1 \oplus m_2(N) \approx 0.16, \quad m_1 \oplus m_2(Θ) \approx 0.02 \  m1m2(F)0.82,m1m2(N)0.16,m1m2(Θ)0.02 


结果解释

  1. 发生火灾的信任度:融合后的结果表明,发生火灾的信任度为82%,远高于单个传感器的结果(传感器1为70%,传感器2为60%)。
  2. 未发生火灾的信任度:未发生火灾的信任度为16%,低于单个传感器的结果(传感器1为20%,传感器2为30%)。
  3. 不确定性:融合后的不确定性仅为2%,表明两个传感器的信息高度一致,减少了不确定性。

结论

通过DS证据理论的Dempster组合规则,我们成功融合了两个传感器的信息,得出了更可靠的结论:火灾发生的可能性很高(82%)。这个例子展示了DS证据理论在实际应用中的强大能力,特别是在处理不确定性和多源信息融合的场景中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值