1 D-S证据理论简介
D-S证据理论,又称Dempster-Shafer理论,由A.P. Dempster于1967年提出,并由Glenn Shafer在1976年进一步发展。该理论是一种处理不确定性和不完整信息的数学工具,广泛应用于信息融合、决策分析、模式识别等领域。
1.1 基本概念
DS证据理论的核心概念包括:
-
识别框架(Frame of Discernment):表示所有可能假设的集合,记作Θ。例如,在目标识别中,Θ可以包含所有可能的目标类型。
-
基本概率分配(Basic Probability Assignment, BPA):也称为质量函数(mass function),记作m。对于识别框架Θ的每一个子集A,m(A)表示对A的信任程度,满足:
m : 2 Θ → [ 0 , 1 ] , m ( ∅ ) = 0 , ∑ A ⊆ Θ m ( A ) = 1 \ m: 2^\Theta \rightarrow [0, 1], \quad m(\emptyset) = 0, \quad \sum_{A \subseteq \Theta} m(A) = 1 \ m:2Θ→[0,1],m(∅)=0,A⊆Θ∑m(A)=1 -
信任函数(Belief Function, Bel):表示对某个假设或假设集合的信任程度,定义为:
B e l ( A ) = ∑ B ⊆ A m ( B ) \ Bel(A) = \sum_{B \subseteq A} m(B) \ Bel(A)=B⊆A∑m(B) -
似然函数(Plausibility Function, Pl):表示对某个假设或假设集合的不确定性程度,定义为:
P l ( A ) = ∑ B ∩ A ≠ ∅ m ( B ) \ Pl(A) = \sum_{B \cap A \neq \emptyset} m(B) \ Pl(A)=B∩A=∅∑m(B)
1.2 Dempster组合规则
当有多个证据源时,DS证据理论通过Dempster组合规则将不同证据源的信息进行融合。对于两个证据源m₁和m₂,其组合后的质量函数m₁⊕m₂定义为:
(
m
1
⊕
m
2
)
(
A
)
=
∑
B
∩
C
=
A
m
1
(
B
)
m
2
(
C
)
1
−
∑
B
∩
C
=
∅
m
1
(
B
)
m
2
(
C
)
\ (m_1 \oplus m_2)(A) = \frac{\sum_{B \cap C = A} m_1(B) m_2(C)}{1 - \sum_{B \cap C = \emptyset} m_1(B) m_2(C)} \
(m1⊕m2)(A)=1−∑B∩C=∅m1(B)m2(C)∑B∩C=Am1(B)m2(C)
其中,分母用于归一化,确保组合后的质量函数仍然满足概率分配的条件。
1.3 DS证据理论的优势
DS证据理论相较于传统的概率论具有以下优势:
- 处理不确定性:能够有效处理由于信息不完整或模糊性引起的不确定性。
- 灵活性强:可以同时处理确定性和不确定性的信息,适用于多种复杂场景。
- 信息融合:通过Dempster组合规则,能够将多个证据源的信息进行有效融合,提高决策的准确性。
1.4 应用领域
DS证据理论在多个领域得到了广泛应用,包括但不限于:
- 目标识别:通过融合多个传感器的信息,提高目标识别的准确性。
- 故障诊断:结合多种故障特征,进行故障模式的识别与诊断。
- 决策支持:在不确定环境下,提供科学的决策依据。
1.5 本章小结
本章简要介绍了DS证据理论的基本概念、Dempster组合规则及其优势和应用领域。作为本文的理论依据,DS证据理论为后续的研究提供了坚实的数学基础和方法论支持。
实例一
假设我们有一个识别框架Θ,表示某个目标的可能类型。设Θ = {A, B, C},其中A、B、C分别表示三种不同的目标类型。我们有两个证据源,分别提供了对目标类型的基本概率分配(BPA)。
1. 定义识别框架和基本概率分配
- 识别框架:Θ = {A, B, C}
- 证据源1的基本概率分配(m₁):
m 1 ( A ) = 0.6 , m 1 ( B ) = 0.3 , m 1 ( C ) = 0.1 \ m_1(A) = 0.6, \quad m_1(B) = 0.3, \quad m_1(C) = 0.1 \ m1(A)=0.6,m1(B)=0.3,m1(C)=0.1
- 证据源2的基本概率分配(m₂):
m 2 ( A ) = 0.5 , m 2 ( B ) = 0.2 , m 2 ( C ) = 0.3 \ m_2(A) = 0.5, \quad m_2(B) = 0.2, \quad m_2(C) = 0.3 \ m2(A)=0.5,m2(B)=0.2,m2(C)=0.3
2. 计算Dempster组合规则
我们需要计算两个证据源的组合结果m₁⊕m₂。根据Dempster组合规则,首先计算所有可能的交集及其对应的质量函数乘积,然后进行归一化处理。
-
计算交集及其质量函数乘积:
m₁ \ m₂ A (0.5) B (0.2) C (0.3) A (0.6) A (0.3) ∅ (0.12) ∅ (0.18) B (0.3) ∅ (0.15) B (0.06) ∅ (0.09) C (0.1) ∅ (0.05) ∅ (0.02) C (0.03) 其中,∅表示空集。
-
计算归一化因子:
首先计算冲突部分(即交集为空集的部分)的总和:
K = ∑ B ∩ C = ∅ m 1 ( B ) m 2 ( C ) = 0.12 + 0.18 + 0.15 + 0.09 + 0.05 + 0.02 = 0.61 \ K = \sum_{B \cap C = \emptyset} m_1(B) m_2(C) = 0.12 + 0.18 + 0.15 + 0.09 + 0.05 + 0.02 = 0.61 \ K=B∩C=∅∑m1(B)m2(C)=0.12+0.18+0.15+0.09+0.05+0.02=0.61归一化因子为:
1 − K = 1 − 0.61 = 0.39 \ 1 - K = 1 - 0.61 = 0.39 \ 1−K=1−0.61=0.39 -
计算组合后的质量函数:
对于每个非空交集,计算其组合后的质量函数:
( m 1 ⊕ m 2 ) ( A ) = m 1 ( A ) ⋅ m 2 ( A ) 1 − K = 0.3 0.39 ≈ 0.769 \ (m_1 \oplus m_2)(A) = \frac{m_1(A) \cdot m_2(A)}{1 - K} = \frac{0.3}{0.39} \approx 0.769 \ (m1⊕m2)(A)=1−Km1(A)⋅m2(A)=0.390.3≈0.769
( m 1 ⊕ m 2 ) ( B ) = m 1 ( B ) ⋅ m 2 ( B ) 1 − K = 0.06 0.39 ≈ 0.154 \ (m_1 \oplus m_2)(B) = \frac{m_1(B) \cdot m_2(B)}{1 - K} = \frac{0.06}{0.39} \approx 0.154 \ (m1⊕m2)(B)=1−Km1(B)⋅m2(B)=0.390.06≈0.154
( m 1 ⊕ m 2 ) ( C ) = m 1 ( C ) ⋅ m 2 ( C ) 1 − K = 0.03 0.39 ≈ 0.077 \ (m_1 \oplus m_2)(C) = \frac{m_1(C) \cdot m_2(C)}{1 - K} = \frac{0.03}{0.39} \approx 0.077 \ (m1⊕m2)(C)=1−Km1(C)⋅m2(C)=0.390.03≈0.077
3. 结果
组合后的基本概率分配为:
m
1
⊕
m
2
(
A
)
≈
0.769
,
m
1
⊕
m
2
(
B
)
≈
0.154
,
m
1
⊕
m
2
(
C
)
≈
0.077
\ m_1 \oplus m_2(A) \approx 0.769, \quad m_1 \oplus m_2(B) \approx 0.154, \quad m_1 \oplus m_2(C) \approx 0.077 \
m1⊕m2(A)≈0.769,m1⊕m2(B)≈0.154,m1⊕m2(C)≈0.077
4. 解释
通过Dempster组合规则,我们将两个证据源的信息进行了融合。结果显示,目标类型A的信任程度最高(约76.9%),而目标类型B和C的信任程度较低(分别为15.4%和7.7%)。这表明在融合了两个证据源的信息后,目标类型A是最有可能的。
总结
这个简单的例子展示了如何使用DS证据理论中的Dempster组合规则将多个证据源的信息进行融合,从而得出更可靠的结论。在实际应用中,DS证据理论可以处理更复杂的情况,适用于多种不确定性和信息融合的场景。
实例二
1. 场景描述
假设我们正在开发一个火灾检测系统,系统使用两个传感器来检测火灾的可能性。传感器1(如烟雾传感器)和传感器2(如温度传感器)分别提供了对火灾发生的基本概率分配(BPA)。我们的目标是融合这两个传感器的信息,判断是否发生了火灾。
2. 识别框架
定义识别框架 Θ 为:
Θ
=
{
F
,
N
}
\ Θ = \{F, N\} \
Θ={F,N}
其中:
- F 表示“发生火灾”
- N 表示“未发生火灾”
传感器提供的基本概率分配
-
传感器1(烟雾传感器) 提供的基本概率分配(m₁):
m 1 ( F ) = 0.7 , m 1 ( N ) = 0.2 , m 1 ( Θ ) = 0.1 \ m_1(F) = 0.7, \quad m_1(N) = 0.2, \quad m_1(Θ) = 0.1 \ m1(F)=0.7,m1(N)=0.2,m1(Θ)=0.1- ( m 1 ( F ) = 0.7 ) \ (m_1(F) = 0.7 ) (m1(F)=0.7)表示传感器1认为发生火灾的概率为70%。
- ( m 1 ( N ) = 0.2 ) \ (m_1(N) = 0.2) (m1(N)=0.2) 表示传感器1认为未发生火灾的概率为20%。
- ( m 1 ( Θ ) = 0.1 ) \ (m_1(Θ) = 0.1) (m1(Θ)=0.1) 表示传感器1对是否发生火灾不确定的概率为10%。
-
传感器2(温度传感器) 提供的基本概率分配(m₂):
m 2 ( F ) = 0.6 , m 2 ( N ) = 0.3 , m 2 ( Θ ) = 0.1 \ m_2(F) = 0.6, \quad m_2(N) = 0.3, \quad m_2(Θ) = 0.1 \ m2(F)=0.6,m2(N)=0.3,m2(Θ)=0.1- ( m 1 ( F ) = 0.6 ) \ (m_1(F) = 0.6) (m1(F)=0.6)表示传感器2认为发生火灾的概率为60%。
- ( m 2 ( N ) = 0.3 ) \ (m_2(N) = 0.3) (m2(N)=0.3) 表示传感器2认为未发生火灾的概率为30%。
- ( m 2 ( Θ ) = 0.1 ) \ (m_2(Θ) = 0.1) (m2(Θ)=0.1) 表示传感器2对是否发生火灾不确定的概率为10%。
使用Dempster组合规则进行信息融合
我们需要将两个传感器的信息进行融合,计算组合后的基本概率分配 (m_1 \oplus m_2)。
1. 计算交集及其质量函数乘积
首先,列出所有可能的交集及其对应的质量函数乘积:
m₁ \ m₂ | F (0.6) | N (0.3) | Θ (0.1) |
---|---|---|---|
F (0.7) | F (0.42) | ∅ (0.21) | F (0.07) |
N (0.2) | ∅ (0.12) | N (0.06) | N (0.02) |
Θ (0.1) | F (0.06) | N (0.03) | Θ (0.01) |
其中,∅ 表示空集。
2. 计算冲突部分(K)
冲突部分是指两个传感器提供的信息完全矛盾的部分(即交集为空集的部分)。在这里,冲突部分的总和为:
K
=
m
1
(
F
)
⋅
m
2
(
N
)
+
m
1
(
N
)
⋅
m
2
(
F
)
=
0.7
×
0.3
+
0.2
×
0.6
=
0.21
+
0.12
=
0.33
\ K = m_1(F) \cdot m_2(N) + m_1(N) \cdot m_2(F) = 0.7 \times 0.3 + 0.2 \times 0.6 = 0.21 + 0.12 = 0.33 \
K=m1(F)⋅m2(N)+m1(N)⋅m2(F)=0.7×0.3+0.2×0.6=0.21+0.12=0.33
3. 计算归一化因子
归一化因子为:
1
−
K
=
1
−
0.33
=
0.67
\ 1 - K = 1 - 0.33 = 0.67 \
1−K=1−0.33=0.67
4. 计算组合后的质量函数
对于每个非空交集,计算其组合后的质量函数:
(
m
1
⊕
m
2
)
(
F
)
=
m
1
(
F
)
⋅
m
2
(
F
)
+
m
1
(
F
)
⋅
m
2
(
Θ
)
+
m
1
(
Θ
)
⋅
m
2
(
F
)
1
−
K
\ (m_1 \oplus m_2)(F) = \frac{m_1(F) \cdot m_2(F) + m_1(F) \cdot m_2(Θ) + m_1(Θ) \cdot m_2(F)}{1 - K} \
(m1⊕m2)(F)=1−Km1(F)⋅m2(F)+m1(F)⋅m2(Θ)+m1(Θ)⋅m2(F)
=
0.42
+
0.07
+
0.06
0.67
=
0.55
0.67
≈
0.82
\ = \frac{0.42 + 0.07 + 0.06}{0.67} = \frac{0.55}{0.67} \approx 0.82 \
=0.670.42+0.07+0.06=0.670.55≈0.82
(
m
1
⊕
m
2
)
(
N
)
=
m
1
(
N
)
⋅
m
2
(
N
)
+
m
1
(
N
)
⋅
m
2
(
Θ
)
+
m
1
(
Θ
)
⋅
m
2
(
N
)
1
−
K
\ (m_1 \oplus m_2)(N) = \frac{m_1(N) \cdot m_2(N) + m_1(N) \cdot m_2(Θ) + m_1(Θ) \cdot m_2(N)}{1 - K} \
(m1⊕m2)(N)=1−Km1(N)⋅m2(N)+m1(N)⋅m2(Θ)+m1(Θ)⋅m2(N)
=
0.06
+
0.02
+
0.03
0.67
=
0.11
0.67
≈
0.16
\ = \frac{0.06 + 0.02 + 0.03}{0.67} = \frac{0.11}{0.67} \approx 0.16 \
=0.670.06+0.02+0.03=0.670.11≈0.16
(
m
1
⊕
m
2
)
(
Θ
)
=
m
1
(
Θ
)
⋅
m
2
(
Θ
)
1
−
K
\ (m_1 \oplus m_2)(Θ) = \frac{m_1(Θ) \cdot m_2(Θ)}{1 - K} \
(m1⊕m2)(Θ)=1−Km1(Θ)⋅m2(Θ)
=
0.01
0.67
≈
0.02
\ = \frac{0.01}{0.67} \approx 0.02 \
=0.670.01≈0.02
融合结果
组合后的基本概率分配为:
m
1
⊕
m
2
(
F
)
≈
0.82
,
m
1
⊕
m
2
(
N
)
≈
0.16
,
m
1
⊕
m
2
(
Θ
)
≈
0.02
\ m_1 \oplus m_2(F) \approx 0.82, \quad m_1 \oplus m_2(N) \approx 0.16, \quad m_1 \oplus m_2(Θ) \approx 0.02 \
m1⊕m2(F)≈0.82,m1⊕m2(N)≈0.16,m1⊕m2(Θ)≈0.02
结果解释
- 发生火灾的信任度:融合后的结果表明,发生火灾的信任度为82%,远高于单个传感器的结果(传感器1为70%,传感器2为60%)。
- 未发生火灾的信任度:未发生火灾的信任度为16%,低于单个传感器的结果(传感器1为20%,传感器2为30%)。
- 不确定性:融合后的不确定性仅为2%,表明两个传感器的信息高度一致,减少了不确定性。
结论
通过DS证据理论的Dempster组合规则,我们成功融合了两个传感器的信息,得出了更可靠的结论:火灾发生的可能性很高(82%)。这个例子展示了DS证据理论在实际应用中的强大能力,特别是在处理不确定性和多源信息融合的场景中。