LEARNING PYTORCH WITH EXAMPLES

以下面的神经网络为例:

在这里插入图片描述
由损失函数(sse,平方差)是2*(y_pred-y)
x与w乘积结果h,来反向求x梯度是:grad_h.dot(w.T)
x与w成绩结果h,来反向求w梯度是:x.T.dot(grad_h)
ReLU,反向题图是:grad_h_relu.copy()[h<0]=0

https://www.geek-share.com/detail/2722319286.html
https://www.cnblogs.com/alan-blog-TsingHua/p/9981522.html

numpy ndarray实现

完全使用矩阵来实现

# -*- coding: utf-8 -*-
import numpy as np

# N is batch size; D_in is input dimension; H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

x = np.random.randn(N, D_in) # input
y = np.random.randn(N, D_out) # output

# Randomly initialize weights
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.dot(w1)
    h_relu = np.maximum(h, 0)
    y_pred = h_relu.dot(w2)

    # Compute and print loss
    loss = np.square(y_pred - y).sum()
    print(t, loss)

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.T.dot(grad_y_pred)
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h < 0] = 0
    grad_w1 = x.T.dot(grad_h)

    # Update weights
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

pytorch tensor实现

pytorch tensor和numpy ndarray基本相同,优点是可以使用GPU加速

# -*- coding: utf-8 -*-

import torch

dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random input and output data
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)

# Randomly initialize weights
w1 = torch.randn(D_in, H, device=device, dtype=dtype)
w2 = torch.randn(H, D_out, device=device, dtype=dtype)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    if t % 100 == 99:
        print(t, loss)

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    # Update weights using gradient descent
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

使用autograd来求反向梯度

如果x是一个tensor,并且有x.requires_grad=True,然后x.grad是另外一个tensor来保存x的梯度。

# -*- coding: utf-8 -*-
import torch

N, D_in, H, D_out = 64, 1000, 100, 10

x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Create random Tensors for weights.
# Setting requires_grad=True indicates that we want to compute gradients with
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
	
	#loss.backward()相当于做了以下的工作
	# grad_y_pred = 2.0 * (y_pred - y)
	# grad_w2 = h_relu.t().mm(grad_y_pred)
	# grad_h_relu = grad_y_pred.mm(w2.t())
	# grad_h = grad_h_relu.clone()
	# grad_h[h < 0] = 0
	# grad_w1 = x.t().mm(grad_h)
    loss.backward()

    # Manually update weights using gradient descent. Wrap in torch.no_grad()
    # because weights have requires_grad=True, but we don't need to track this
    # in autograd.
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        # Manually zero the gradients after updating weights
        w1.grad.zero_()
        w2.grad.zero_()

pytorch nn来构建网络及使用已经实现的损失函数

1)类似keras的使用

# -*- coding: utf-8 -*-
import torch
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
# model 替代了权重矩阵,以及构建向前传播的过程
# w1 = torch.randn(D_in, H, requires_grad=True)
# w2 = torch.randn(H, D_out, requires_grad=True)
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out),
)
# 替代了损失函数,本质是实现了它
#loss = (y_pred - y).pow(2).sum()   
loss_fn = torch.nn.MSELoss(reduction='sum')

learning_rate = 1e-4
for t in range(500):
	# model替代了前向传播
	#y_pred = x.mm(w1).clamp(min=0).mm(w2)
	#loss = (y_pred - y).pow(2).sum()     
    y_pred = model(x)

	#loss = (y_pred - y).pow(2).sum()    
    loss = loss_fn(y_pred, y)
 	# 替代了归零
    # w1.grad.zero_()
    # w2.grad.zero_()
    model.zero_grad()

    loss.backward()

	# 代替了
    # w1 -= learning_rate * w1.grad
    # w2 -= learning_rate * w2.grad
    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

使用pytorch optim 来更新权重

# -*- coding: utf-8 -*-
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out),
)
loss_fn = torch.nn.MSELoss(reduction='sum')

learning_rate = 1e-4
# optim 代替了
# for param in model.parameters():
#    param -= learning_rate * param.grad
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for t in range(500):
    y_pred = model(x)
    loss = loss_fn(y_pred, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

定制化nn modules

# -*- coding: utf-8 -*-
import torch


class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        """
        In the constructor we instantiate two nn.Linear modules and assign them as
        member variables.
        """
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)

    def forward(self, x):
        """
        In the forward function we accept a Tensor of input data and we must return
        a Tensor of output data. We can use Modules defined in the constructor as
        well as arbitrary operators on Tensors.
        """
        h_relu = self.linear1(x).clamp(min=0)
        y_pred = self.linear2(h_relu)
        return y_pred


# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Construct our model by instantiating the class defined above
model = TwoLayerNet(D_in, H, D_out)

# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the two
# nn.Linear modules which are members of the model.
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    # Forward pass: Compute predicted y by passing x to the model
    y_pred = model(x)

    # Compute and print loss
    loss = criterion(y_pred, y)
    if t % 100 == 99:
        print(t, loss.item())

    # Zero gradients, perform a backward pass, and update the weights.
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

参考:
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值