adaboost(adaptive boosting),即自适应助推法。
Boosting 也需要 Bootstrapping。但是,这里还有一个区别。与 bagging 不同,adaboost 为每个数据样本加权。这意味着一些样本运行的频率比其他样本高。
1.当 Boosting 运行在模型中时,它追踪哪些数据样本是成功的,哪些不成功。输出结果分类错误最多的数据集会被赋予更高的权重。即这些数据更加复杂,需要更多次迭代才能恰当地训练模型。
2.在实际的分类阶段中,Boosting 处理模型的方式也存在区别。Boosting 追踪模型误差率,因为更好的模型会获得更好的权重。
具体过程如下:
1.通过加法模型将基础模型进行线性的组合。
2.每一轮训练都提升那些错误率小的基础模型权重,同时减小错误率高的模型权重。
3.在每一轮改变训练数据的权值或概率分布,通过提高那些在前一轮被弱分类器分错样例的权值,减小前一轮分对样例的权值,来使得分类器对误分的数据有较好的效果。
参考:
https://www.sohu.com/a/206543058_465975
https://easyai.tech/ai-definition/adaboost/
https://www.datalearner.com/blog/1051560309522503