hadoop Idea 提交任务到集群

submit

package wc;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.log4j.BasicConfigurator;

public class IDES {

    public static void main(String[] args) throws Exception {
        BasicConfigurator.configure(); //自动快速地使用缺省Log4j环境。
        System.setProperty("HADOOP_USER_NAME","cla");//配置jvm变量


        Configuration conf = new Configuration();//
        //默认在本地运行,这里会直接读取win里里面的hadoop配置,所以可以把conf.set省略
        //conf.set("fs.defaultFS", "file:///");
        //conf.set("mapreduce.framework.name", "local");

        // 在hdfs上运行
        conf.set("fs.defaultFS", "hdfs://192.168.43.241:9000");
        conf.set("mapreduce.framework.name", "yarn");
        conf.set("yarn.resourcemanager.hostname","192.168.43.241");
        conf.set("mapreduce.app-submission.cross-platform","true");//兼容win

        Job job = Job.getInstance(conf);

        //mapper,reducer,submitter三个类
//        job.setJarByClass(JobSubmitter.class);
        job.setJar("d:/wc.jar");
        job.setMapperClass(CountMapper.class);
        job.setReducerClass(CountReducer.class);
        //mapper,reducer输出key和value的类型
        job.setMapOutputKeyClass(Text.class);//mapper
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);//reducer
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.setInputPaths(job, new Path("/wordcount/input"));
        FileOutputFormat.setOutputPath(job, new Path("/wordcount/output"));

        job.setNumReduceTasks(3);
        boolean res = job.waitForCompletion(true);
        System.exit(res?0:1);
    }
}

mapper

package wc;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * 但是,在mapreduce中,map产生的数据需要传输给reduce,需要进行序列化和反序列化,java原生的数据类型会很慢,
 * 所以hadoop为jdk中的常用基本类型Long String Integer Float等数据类型封住了自己的实现了hadoop序列化接口的类型:
 * LongWritable,Text,IntWritable,FloatWritable
 *
 */
public class CountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
    //KEYIN :是map task读取到的一行的起始偏移量Long,hadoop中新建了LongWritable类型来替代
    //VALUEIN:是map task读取到的该行的内容,类型是String,hadoop中用Text来表示
    //KEYOUT:返回的key,用Text,既字母
    //VALUEOUT:返回的value,用Integer,既字母的个数
    @Override
    protected void map(LongWritable key, Text value, Context context)//Context既输出的key-value的容器,可以看成是一个大的字典
            throws IOException, InterruptedException {
        String line = value.toString(); //将一行Text数据转换为String
        String[] words = line.split(" ");//分割单词
        for(String word:words){//将分割的每一个单词写入到字典
            context.write(new Text(word), new IntWritable(1));
        }
    }
}


reduce

package wc;


import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.Iterator;

public class CountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
        int count = 0;
        Iterator<IntWritable> iterator = values.iterator();
        while(iterator.hasNext()){
            IntWritable value = iterator.next();
            count += value.get();
        }
        context.write(key, new IntWritable(count));
    }
}


相关资源
IDE直接和hadoop集群连接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值