RNN在自然语言处理中的应用

前言

跳过废话,直接看正文

循环神经网络(Recurrent Neural Networks,RNNs)目前在自然语言处理领域中的格外受欢迎。
很多简单的自然语言处理任务可以直接由RNN来完成。
这里列出几种RNN在自然语言处理领域的应用算法,以供参考。(目前只列出了参考代码,后续会补上相关说明。)


正文

中文分词算法

具体代码参考github

命名实体识别算法

具体代码参考github

文本生成算法

这里内容比较多,详见后一篇博客。

后记

  • 分词算法的关键有两个,算法和词典。缺了其中一个,效果都不会太好,可惜现在互联网上公布的标注语料库太少了,希望将来能做一份贡献吧。

  • 语言处理领域中的很多问题(分词、命名实体识别等)都可以转换为序列标注问题,而序列标注这样的上下文关系较紧密的问题由RNN来处理再适合不过了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值