【自然语言处理】RNN模型(循环神经网络)

本文介绍了RNN(循环神经网络)的基础知识,包括RNN如何利用序列数据处理自然语言问题,应用于文本分类、情感分析等领域。详细阐述了RNN的单层神经网络结构,按照输入输出结构和内部结构的分类,并讨论了传统RNN的优缺点,如梯度消失问题。此外,提到了LSTM、Bi-LSTM、GRU和Bi-GRU等RNN变体。
摘要由CSDN通过智能技术生成

1.RNN模型简介

    a.RNN(Recurrent Neural Network),也叫循环神经网络,是自然语言处理中的基础模型

    b.它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出

    c.RNN产生的原因:RNN能够很好地利用序列之间的关系,因此对自然界中具有连续性的输入序列进行很好的处理。举例来说,apple既可以指代苹果,也可以指代苹果公司,有些模型输出结果取决于训练数据中标记的哪种标签较多,RNN能够解决此问题,结合上下文去分析apple的意思。

    d.应用领域:文本分类、情感分析、意图识别、机器翻译等

2.RNN神经网络

    a.RNN单层神经网络图如下所示

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值