1. 马尔可夫网络、马尔可夫模型、马尔可夫过程、贝叶斯网络的区别
相信大家都看过上一节我讲得贝叶斯网络,都明白了概率图模型是怎样构造的,如果现在还没明白,请看我上一节的总结: 贝叶斯网络
这一节我们重点来讲一下马尔可夫,正如题目所示,看了会一脸蒙蔽,好在我们会一点一点的来解释上面的概念,请大家按照顺序往下看就会完全弄明白了,这里我给一个通俗易懂的定义,后面我们再来一个个详解。
以下共分六点说明这些概念,分成条目只是方便边阅读边思考,这6点是依次递进的,不要跳跃着看。
- 将随机变量作为结点,若两个随机变量相关或者不独立,则将二者连接一条边;若给定若干随机变量,则形成一个有向图,即构成一个 网络 。
- 如果该网络是有向无环图,则这个网络称为 贝叶斯网络。
- 如果这个图退化成线性链的方式,则得到 马尔可夫模型 ;因为每个结点都是随机变量,将其看成各个时刻(或空间)的相关变化,以随机过程的视角,则可以看成是 马尔可夫过程 。
- 若上述网络是无向的,则是无向图模型,又称 马尔可夫随机场或者马尔可夫网络 。
- 如果在给定某些条件的前提下,研究这个马尔可夫随机场,则得到 条件随机场 。
- 如果使用条件随机场解决标注问题,并且进一步将条件随机场中的网络拓扑变成线性的,则得到 线性链条件随机场 。
2. 马尔可夫模型
2.1 马尔可夫过程
马尔可夫过程(Markov process)是一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 (过去 )。例如森林中动物头数的变化构成——马尔可夫过程。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。
每个状态的转移只依赖于之前的n个状态,这个过程被称为1个n阶的模型,其中n是影响转移状态的数目。最简单的马尔可夫过程就是一阶过程, 每一个状态的转移只依赖于其之前的那一个状态 ,这个也叫作 马尔可夫性质 。用数学表达式表示就是下面的样子:
假设这个模型的每个状态都只依赖于之前的状态,这个假设被称为 马尔科夫假设 ,这个假设可以大大的简化这个问题。显然,这个假设可能是一个非常糟糕的假设,导致很多重要的信息都丢失了。
=P(X_{n+1}=x|X_n=x_n))
假设天气服从 马尔可夫链 :
从上面这幅图可以看出:
- 假如今天是晴天,明天变成阴天的概率是0.1
- 假如今天是晴天,明天任然是晴天的概率是0.9,和上一条概率之和为1,这也符合真实生活的情况。
晴 | 阴 | |
---|---|---|
晴 | 0.9 | 0,1 |
阴 | 0.5 | 0.5 |
由上表我们可以得到马尔可夫链的 状态转移矩阵 :
因此,一阶马尔可夫过程定义了以下三个部分:
- 状态 :晴天和阴天
- 初始向量 :定义系统在时间为0的时候的状态的概率
- 状态转移矩阵 :每种天气转换的概率
马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等