算法——马尔可夫与隐马尔可夫模型

HMM(Hidden Markov Model)是一种统计模型,用来描述一个隐含未知量的马尔可夫过程(马尔可夫过程是一类随机过程,它的原始模型是马尔科夫链),它是结构最简单的动态贝叶斯网,是一种著名的有向图模型,主要用于时序数据建模。在语音识别、自然语言处理等领域有广泛应用

Background requirements:

1、基础的概率学知识

2、动态规划是加分项

3、有实际运用Markov Model的应用会帮助学以致用

NOTE:

对于下面的介绍,我们依据这个节奏,参考

1)指定模型参数

2)如何估计这些参数 【这个没有进行介绍】

3)利用这些参数进行预测

这三大类适用于任何统计机器学习模型

马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法、序列分类等各个自然语言处理等应用领域。经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具。到目前为止,它一直被认为是实现快速精确的语音识别系统的最成功的方法之一。

二、马尔科夫模型的案例之一——天气预报
下面是一个马尔科夫模型在天气预测方面的简单例子。如果第一天是雨天,第二天还是雨天的概率是0.8,是晴天的概率是0.2;如果第一天是晴天,第二天还是晴天的概率是0.6,是雨天的概率是0.4。问:如果第一天下雨了,第二天仍然是雨天的概率是多少?,第十天是晴天的概率是多少?;经过很长一段时间后雨天、晴天的概率分别是多少?

首先构建转移概率矩阵,由于这里每一天的状态就是晴天或者是下雨两种情况,所以矩阵是2x2的,如下:

雨天晴天
0.80.4雨天
0.20.6晴天

注意:每列和为1,分别对雨天、晴天,这样构建出来的就是转移概率矩阵了。如下:

在这里插入图片描述

假设初始状态第一天是雨天,我们记为

在这里插入图片描述

这里【1,0】分别对于雨天,晴天。

初始条件:第一天是雨天,第二天仍然是雨天(记为P1)的概率为:

P1 = AxP0

得到P1 = 【0.8,0.2】,正好满足雨天~雨天概率为0.8,当然这根据所给条件就是这样。

下面计算第十天(记为P9)是晴天概率:
在这里插入图片描述

得到,第十天为雨天概率为0.6668,为晴天的概率为0.3332。

下面计算经过很长一段时间后雨天、晴天的概率,显然就是下面的递推公式了:

在这里插入图片描述

2.2 递推公式的改进

虽然上面构造了一个递推公式,但是直接计算矩阵A的n次方是很难计算的,我们将A进行特征分解(谱分解)一下,得到:

在这里插入图片描述

现在递推公式变成了下面的样子:

在这里插入图片描述

显然,当n趋于无穷即很长一段时间以后,Pn = 【0.67,0.33】。即雨天概率为0.67,晴天概率为0.33。并且,我们发现:初始状态如果是P0 =【0,1】,最后结果仍然是Pn = 【0.67,0.33】。这表明,马尔科夫过程与初始状态无关,跟转移矩阵有关。

一文带你了解隐马尔可夫模型(含详细推导) - 知乎

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
HMM是一种常见的统计模型,用于描述随机生成的序列。Viterbi算法是一种在HMM中进行解码的动态规划算法,用于寻找最可能的藏状态序列。下面是HMM的MATLAB实现,包括Viterbi算法。 首先,我们需要定义一个HMM模型。我们假设这个模型有3个藏状态和2个可见状态。我们使用矩阵A表示藏状态之间的转移概率,矩阵B表示每个藏状态生成每个可见状态的概率,向量pi表示初始藏状态的概率分布。 ```matlab % 定义HMM模型参数 A = [0.5 0.2 0.3; 0.3 0.5 0.2; 0.2 0.3 0.5]; B = [0.5 0.5; 0.4 0.6; 0.7 0.3]; pi = [0.2 0.4 0.4]; ``` 接下来,我们需要生成一个可见序列。我们使用HMM模型中的随机过程生成一个长度为10的可见序列。 ```matlab % 生成可见序列 T = 10; q = zeros(1, T); o = zeros(1, T); q(1) = randsrc(1, 1, [1:3; pi]); o(1) = randsrc(1, 1, [1:2; B(q(1), :)]); for t = 2:T q(t) = randsrc(1, 1, [1:3; A(q(t-1), :)]); o(t) = randsrc(1, 1, [1:2; B(q(t), :)]); end ``` 接下来,我们使用Viterbi算法解码这个可见序列,得到最可能的藏状态序列。我们定义一个矩阵V表示每个时间步的最大概率,以及一个矩阵path表示每个时间步的最大概率对应的前一个状态。 ```matlab % Viterbi算法解码 V = zeros(3, T); path = zeros(3, T); V(:, 1) = pi' .* B(:, o(1)); for t = 2:T for j = 1:3 [V(j, t), path(j, t)] = max(V(:, t-1) .* A(:, j)); V(j, t) = V(j, t) * B(j, o(t)); end end ``` 最后,我们找到最可能的藏状态序列。我们首先找到最后一个时间步的最大概率对应的藏状态,然后从后往前依次寻找每个时间步的最大概率对应的藏状态,最终得到整个藏状态序列。 ```matlab % 找到最可能的藏状态序列 [~, q(T)] = max(V(:, T)); for t = T-1:-1:1 q(t) = path(q(t+1), t+1); end ``` 完整代码如下: ```matlab % 定义HMM模型参数 A = [0.5 0.2 0.3; 0.3 0.5 0.2; 0.2 0.3 0.5]; B = [0.5 0.5; 0.4 0.6; 0.7 0.3]; pi = [0.2 0.4 0.4]; % 生成可见序列 T = 10; q = zeros(1, T); o = zeros(1, T); q(1) = randsrc(1, 1, [1:3; pi]); o(1) = randsrc(1, 1, [1:2; B(q(1), :)]); for t = 2:T q(t) = randsrc(1, 1, [1:3; A(q(t-1), :)]); o(t) = randsrc(1, 1, [1:2; B(q(t), :)]); end % Viterbi算法解码 V = zeros(3, T); path = zeros(3, T); V(:, 1) = pi' .* B(:, o(1)); for t = 2:T for j = 1:3 [V(j, t), path(j, t)] = max(V(:, t-1) .* A(:, j)); V(j, t) = V(j, t) * B(j, o(t)); end end % 找到最可能的藏状态序列 [~, q(T)] = max(V(:, T)); for t = T-1:-1:1 q(t) = path(q(t+1), t+1); end ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值