FPGA进行AI推理方案

本文介绍了三种使用FPGA进行AI推理的方案:Zynq+Paddle Lite、Zynq+DPU和Pynq框架。Paddle Lite侧重移动端推理,支持多种硬件,而Xilinx的DPU专注于卷积神经网络。Pynq则提供了Python接口,简化了开发流程。文章对比了三种方案,并提到在FZU3开发板上实现了人脸识别应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FPGA进行AI推理方案

近期在研究FPGA进行推理时,总结了一下三种方案,目前我了解使用FPGA进行推理还是少数,不知道大家有没有做过使用FPGA进行推理的项目,欢迎交流。

1 Zynq + Paddle lite

第一种方案使用Zynq+Paddlelite。Paddle-Lite 框架是 PaddleMobile 新一代架构,重点支持移动端推理预测,特点高性能、多硬件、轻量级 。支持PaddleFluid/TensorFlow/Caffe/ONNX模型的推理部署。目前已经支持 ARM CPU, Mali GPU, Adreno GPU, Huawei NPU 等多种硬件。

官方有三款Edgeboard开发板,包括FZU3、FZU5和FZU9。都是基于XilinxZynq UltraScale+ MPSoC系列fpga开发平台,根据期间型号不同,开发板分为三种。Edgeboard百度完成FPGA逻辑设计,驱动设计并封装底层的功能,封装深度学习相关内容,开发主要针对软件开发用户,fpga部分原理图对外,不提供代码,后续会以付费ip形式提供。开发板自带程序可以实现图像分类和目标检测任务。FZU3大约1000元左右,FZU5带视频编解码VCU3600多,价格比通常开发板要便宜很多,但是接口较少,没有相关的教程。

2 Zynq + DPU

### FPGA 实现 AI 推理FPGA上实现AI推理的一个典型例子是在卷积神经网络(CNN)中实现池化层的功能。下面是一个简单的Verilog代码示例,用于展示如何在FPGA上实现最大池化操作[^3]。 #### 最大池化层 Verilog 代码示例 ```verilog module max_pooling ( input wire clk, input wire rst_n, input wire [7:0] data_in, output reg [7:0] data_out ); reg [7:0] window [0:3]; integer i; always @(posedge clk or negedge rst_n) begin if (!rst_n) begin for (i = 0; i < 4; i = i + 1) window[i] <= 8'b0; data_out <= 8'b0; end else begin // Shift the incoming data into the sliding window {window[3], window[2], window[1], window[0]} <= {window[2], window[1], window[0], data_in}; // Find maximum value within the current window of size 4 case ({window[3] >= window[2], window[3] >= window[1], window[3] >= window[0]}) 3'b111 : data_out <= window[3]; 3'b011 : data_out <= window[2]; 3'b001 : data_out <= window[1]; default : data_out <= window[0]; endcase end end endmodule ``` 此模块接收输入信号`data_in`作为待处理的数据流,在每个时钟周期更新一次窗口内的四个像素值,并输出这四个像素的最大值到`data_out`。该过程模拟了一个大小为\(2 \times 2\)的滑动窗口沿特征图移动的过程,每次只保留窗口内最大的那个数值,从而实现了降采样的效果。 尽管上述实例展示了基本原理,实际部署于FPGA平台上的AI模型可能更加复杂,涉及更多类型的算子以及更复杂的控制逻辑来优化性能和资源利用率。对于更高层次的应用场景,则需考虑整个NPU架构的设计,包括但不限于指令集定义、存储管理机制等方面的内容[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

硬码农二毛哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值