问题
在实际工程项目中发现很多都是优化问题,不是机器学习擅长的拟合问题。
比如水系统中央空调机组运行参数的调节优化,
如何使用机器学习能力解决复杂动态的优化控制问题?
经典方法
有文章比较过强化学习(RL)和模型预测控制(MPC)两种经典的方法:
可能的方法
强化学习主要基于大量的尝试,MPC主要基于专家模型,当某些应用场景无法提供大量尝试,也无法直接构建专家模型时,就需要考虑ML-MPC了,ML-MPC使用机器学习算法来估计系统模型、进行预测和生成控制动作。主要思想是使用数据驱动模型来克服传统 MPC 方法的局限性。ML-MPC可以实时适应不断变化的条件,使其适用于动态和不可预测的系统。与基于专家模型的 MPC 相比,ML-MPC可以提供更高的准确性,尤其是在复杂且难以建模的系统中。
方法小结
机器学习的拟合能力与优化问题之间的桥梁是,找到那些符合优化目标的小量正样本,训练一个开始看起来不那么好的AI模型,随着动态数据不断预测目标进行优化控制,以及AI模型的在线学习,问题将会逐步优化靠近动态的目标期望,并且AI模型的性能也会越来越好,就像一束越来越聚的光。
应用案例
产品资料链接: 水系统中央空调机组AI模型自动调节优化控制