关于局部敏感哈希算法(LSH)的应用场景

LSH最大的作用是对海量高维数据降维(一般流程是先为这些大型的文本建立词库,然后通过降维的具体算法,如minHash,stableHash这些,为每个大型文本构建签名矩阵,然后使用Jacaard,这些进行相似度计算,然后把相似度相近的放到一个桶里),然后在桶内进行最近邻查找,在一些大型的数据中,如多个知识图谱的相似性判断,则可以用LSH,比如我需要快速判定百度百科和互动百科的相似度,等等~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值