Nvidia GeForce GT730不支持Pytorch 1.2.x GPU功能与可能解决办法及Pytorch各版本CUDA Capability兼容列表

问题:

近期在Windows 10 Pro 64位系统下,想基于Pytorch GPU版本进行时间序列LSTM模型的训练,机器配置为数年前的硬件,显卡是Nvidia GeForce GT730,CUDA版本是11.4, 如下所示: 

在安装了Nvidia Windows相关驱动及CUDA工具包之后,根据官方推荐,进行了如下安装: 

Previous PyTorch Versions | PyTorch                

# CUDA 11.3
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113

成功安装后,显示版本已具备CUDA功能,如下:

但在将程序调整为GPU相关的支持后,当运行时会提示下面的警告: 

显示GT 730是较旧版本,具备CUDA Capability 3.5, 而Pytorch版本目前支持 Capability 3.7以上的效能,因而可以断定该Pytorch GPU能力无法在GT 730的CUDA上发挥。

这点判断可以从以下命令行可以直观看到: 

从网络多种资源(包括官方支持), 得到的信息是Pytorch 1.5以前的版本(有说 1.3.1) 才提供Capabilities 3.5的内置支持。  

可能解决办法:

可以参考以下链接,Pytorch技术人员提供了当前版本Pytorch能够支持GT730 3.5 CUDA Capability的方法:  

PyTorch for Tesla k40c with cuda 11.2 - #4 by ptrblck - PyTorch Forums

为使最新版本具备支持GT 730 CUDA的能力,需要按照其中的建议进行编译:

https://github.com/pytorch/pytorch#from-source

鉴于Tensorflow版本可以发挥GPU能力,本人对上述方案尚未实际尝试,仅供参考。 

Pytorch CUDA Compute Capability各版本支持情况 

有高手将Pytorch各官方版本的CUDA  Capability支持情况用Python脚本进行了分析汇总,可以参见以下链接: 

GitHub - moi90/pytorch_compute_capabilities

https://github.com/moi90/pytorch_compute_capabilities/blob/main/table.md​​​​​​​​​​​​​​




 

截止2022年10月底的列表如下, Appreciate MOI90's smart work again!

其中相关讨论有时间也可以参考: 

    https://discuss.pytorch.org/t/gpu-compute-capability-support-for-each-pytorch-version/62434/7
 

packagearchitectures
pytorch-1.12.1-py3.7_cuda11.6_cudnn8.3.2_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.12.1-py3.7_cuda11.3_cudnn8.3.2_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.12.1-py3.7_cuda10.2_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.12.0-py3.7_cuda11.6_cudnn8.3.2_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.12.0-py3.7_cuda11.3_cudnn8.3.2_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.12.0-py3.7_cuda10.2_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.11.0-py3.7_cuda11.5_cudnn8.3.2_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.11.0-py3.7_cuda11.3_cudnn8.2.0_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.11.0-py3.7_cuda11.1_cudnn8.0.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.11.0-py3.7_cuda10.2_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.10.2-py3.7_cuda11.3_cudnn8.2.0_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.10.2-py3.7_cuda11.1_cudnn8.0.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.10.2-py3.7_cuda10.2_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.10.1-py3.7_cuda11.3_cudnn8.2.0_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.10.1-py3.7_cuda11.1_cudnn8.0.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.10.1-py3.7_cuda10.2_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.10.0-py3.7_cuda11.3_cudnn8.2.0_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.10.0-py3.7_cuda11.1_cudnn8.0.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.10.0-py3.7_cuda10.2_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.9.1-py3.7_cuda11.1_cudnn8.0.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.9.1-py3.7_cuda10.2_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.9.0-py3.7_cuda11.1_cudnn8.0.5_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.9.0-py3.7_cuda10.2_cudnn7.6.5_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.1-py3.7_cuda11.1_cudnn8.0.5_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.8.1-py3.7_cuda10.2_cudnn7.6.5_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.1-py3.7_cuda10.1_cudnn7.6.3_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.0-py3.7_cuda11.1_cudnn8.0.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80, sm_86
pytorch-1.8.0-py3.7_cuda10.2_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.8.0-py3.7_cuda10.1_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.1-py3.7_cuda11.0.221_cudnn8.0.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80
pytorch-1.7.1-py3.7_cuda10.2.89_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.1-py3.7_cuda10.1.243_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.1-py3.7_cuda9.2.148_cudnn7.6.3_0sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.7.0-py3.7_cuda11.0.221_cudnn8.0.3_0sm_37, sm_50, sm_60, sm_61, sm_70, sm_75, sm_80
pytorch-1.7.0-py3.7_cuda10.2.89_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.0-py3.7_cuda10.1.243_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.7.0-py3.7_cuda9.2.148_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.6.0-py3.7_cuda10.2.89_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.6.0-py3.7_cuda10.1.243_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.6.0-py3.7_cuda9.2.148_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.5.1-py3.7_cuda10.2.89_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.1-py3.7_cuda10.1.243_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.1-py3.7_cuda9.2.148_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.5.0-py3.7_cuda10.2.89_cudnn7.6.5_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.0-py3.7_cuda10.1.243_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.5.0-py3.7_cuda9.2.148_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.4.0-py3.7_cuda10.1.243_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.4.0-py3.7_cuda10.0.130_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.4.0-py3.7_cuda9.2.148_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.3.1-py3.7_cuda10.1.243_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.1-py3.7_cuda10.0.130_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.1-py3.7_cuda9.2.148_cudnn7.6.3_0sm_35, sm_37, sm_50, sm_60, sm_61, sm_70
pytorch-1.3.0-py3.7_cuda10.1.243_cudnn7.6.3_0sm_30, sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.0-py3.7_cuda10.0.130_cudnn7.6.3_0sm_30, sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.3.0-py3.7_cuda9.2.148_cudnn7.6.3_0sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.2.0-py3.7_cuda10.0.130_cudnn7.6.2_0sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.2.0-py3.7_cuda9.2.148_cudnn7.6.2_0sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.2.0+cu92-py3.7_cuda9.2.148_cudnn7.6.2_0sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.1.0-py3.7_cuda10.0.130_cudnn7.5.1_0sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.1.0-py3.7_cuda9.0.176_cudnn7.5.1_0sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.0.1-py3.7_cuda10.0.130_cudnn7.4.2_2sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.0.1-py3.7_cuda10.0.130_cudnn7.4.2_0sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.0.1-py3.7_cuda9.0.176_cudnn7.4.2_2sm_35, sm_50, sm_60, sm_70
pytorch-1.0.1-py3.7_cuda9.0.176_cudnn7.4.2_0sm_35, sm_50, sm_60, sm_61, sm_70
pytorch-1.0.1-py3.7_cuda8.0.61_cudnn7.1.2_2sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61
pytorch-1.0.1-py3.7_cuda8.0.61_cudnn7.1.2_0sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61
pytorch-1.0.0-py3.7_cuda10.0.130_cudnn7.4.1_1sm_30, sm_35, sm_50, sm_60, sm_61, sm_70, sm_75
pytorch-1.0.0-py3.7_cuda9.0.176_cudnn7.4.1_1sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61, sm_70
pytorch-1.0.0-py3.7_cuda8.0.61_cudnn7.1.2_1sm_20, sm_35, sm_37, sm_50, sm_52, sm_53, sm_60, sm_61

这个问题花费了不少时间,为避免无为的时间浪费,特此共享。

GT 730是一款显卡型号,它支持CUDA并且CUDA版本11.2兼容。根据引用中提到的信息,你可以下载对应版本CUDA和cuDNN来支持深度学习神经网络运算。CUDA是一种用于并行计算的平台和编程模型,它可以利用GPU的并行计算能力来加速计算任务。对于GT 730显卡来说,它支持CUDA编程,并且可以用于加速各种计算任务,不仅仅限于3D图形加速。如果你想下载CUDA和cuDNN,你可以访问NVIDIA Developer的官方网站,根据你的显卡型号和CUDA版本下载对应的软件包。下载并安装这些软件后,你就可以使用GT 730显卡进行CUDA编程和深度学习任务了。<span class="em"&gt;1</span&gt;<span class="em"&gt;2</span&gt;<span class="em"&gt;3</span&gt; #### 引用[.reference_title] - *1* [Windows下查看显卡型号及所支持的CUDA版本](https://blog.csdn.net/mbdong/article/details/121769320)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [CUDA-z软件](https://download.csdn.net/download/jemima/10446097)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [NVIDIA GeForce GT 730 配置 CUDA](https://blog.csdn.net/hailiannanhai/article/details/123970554)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值