[Codeforces#475D]CGCDSSQ(st表+二分+数学相关)

版权声明:转载请注明出处:http://blog.csdn.net/clove_unique https://blog.csdn.net/Clove_unique/article/details/53080316

题目描述

传送门
题意:对于每一个xi求存在多少(l,r)满足gcd(al,al+1...,ar)=xi

题解

g(l,r)=gcd(al,al+1...,ar),那么有一个非常重要的性质:
g(l,r),g(l,r+1),g(l,r+2)...是不增的且其值至多只会变化log2n次。
第一个性质非常显然,第二个性质的话由于每一次gcd变化都至少是/2了,那么至多变化log2ngcd就变为1了,就不会再变化了。
枚举区间的起点l,每一次二分gcd变化的点,然后统计区间数量。需要快速查询一段区间的gcd值,用st表可以实现O(1)。总时间复杂度O(nlog2n)

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
using namespace std;
#define LL long long
#define N 300005
#define sz 17

int n,q,g,loc,last;
int a[N],x[N],st[N][sz+5],lg2[N];
map <int,LL> ans;

int gcd(int a,int b)
{
    if (!b) return a;
    else return gcd(b,a%b);
}
void init()
{
    for (int i=1,p=0;i<=n;++i)
    {
        while ((1<<p)<=i) ++p;
        lg2[i]=p-1;
    }
    for (int i=1;i<=n;++i) st[i][0]=a[i];
    for (int j=1;j<sz;++j)
        for (int i=1;i<=n;++i)
            if (i+(1<<j)-1<=n)
                st[i][j]=gcd(st[i][j-1],st[i+(1<<(j-1))][j-1]);
}
int query(int l,int r)
{
    if (l>r) return 0;
    int k=lg2[r-l+1];
    return gcd(st[l][k],st[r-(1<<k)+1][k]);
}
int find(int s,int x)
{
    int l=s,r=n,mid,ans=n+1;
    while (l<=r)
    {
        mid=(l+r)>>1;
        int t=query(s,mid);
        if (x>=t) ans=mid,r=mid-1;
        else l=mid+1;
    }
    return ans;
}
int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;++i) scanf("%d",&a[i]);
    init();
    scanf("%d",&q);
    for (int i=1;i<=q;++i) scanf("%d",&x[i]);
    for (int i=1;i<=n;++i)
    {
        g=a[i];last=i;loc=i;
        while (loc<=n)
        {
            loc=find(i,g-1);
            ans[g]+=(LL)loc-(LL)last;
            g=query(i,loc);last=loc;
        }
    }
    for (int i=1;i<=q;++i)
        printf("%I64d\n",ans[x[i]]);
}

总结

①这个关于gcd的性质要记住。遇到数学相关的题性质要大胆想。

阅读更多
换一批

没有更多推荐了,返回首页