引言
在《博弈圣经》中博弈论的定义:我们把动物利用大自然移动的瘾魂,在决策人期待的空间里,形成三维均衡的语文学理论,称为博弈论。
博弈论又被称为对策论(Game Theory)既是现代数学的一个新分支,也是运筹学的一个重要学科。
博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。 博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。
本文只是讨论了信息学竞赛中博弈方面最基本最简单的几个方法和结论。
由于这一类博弈问题都有一个共同的要求就是博弈双方都是“绝对聪明”的,所以据说只有“绝对聪明”的人才能学好博弈论哦。
下面就让我们一起来感受博弈问题的美妙吧。
Nim游戏
从一个问题进入。
描述
今天我们要认识一对新朋友,Alice与Bob。
Alice与Bob总是在进行各种各样的比试,今天他们在玩一个取石子的游戏。
在这个游戏中,Alice和Bob放置了N堆不同的石子,编号1..N,第i堆中有 Ai 个石子。
每一次行动,Alice和Bob可以选择从一堆石子中取出任意数量的石子。至少取1颗,至多取出这一堆剩下的所有石子。
Alice和Bob轮流行动,取走最后一个石子的人获得胜利。
假设每一轮游戏都是Alice先行动,请你判断在给定的情况下,如果双方都足够聪明,谁会获得胜利?
讨论
这是一个古老而又经典的博弈问题:Nim游戏。
Nim游戏是经典的公平组合游戏(ICG),对于ICG游戏我们有如下定义:
- 两名选手
- 两名选手轮流行动,每一次行动可以在有限合法操作集合中选择一个
- 游戏的任何一种可能的局面(position),合法操作集合只取决于这个局面本身,不取决于轮到哪名选手操作、以前的任何操作、骰子的点数或者其它因素;局面的改变称为“移动”(move)
- 如果轮到某名选手移动,且这个局面的合法的移动集合为空(也就是说此时无法进行移动),则这名选手负
对于第三条,我们有更进一步的定义Position,我们将Position分为两类:
- P-position:在当前的局面下,先手必败
- N-position:在当前的局面下,先手必胜
它们有如下性质:
- 合法操作集合为空的局面是P-position
- 可以移动到P-position的局面是N-position
- 所有移动都只能到N-position的局面是P-position
在这个游戏中,我们已经知道A[] = {0,0,…,0}的局面是P局面,那么我们可以通过反向枚举来推导出所有的可能局面,总共的状态数量为 A1∗A2∗...∗AN 。并且每一次的状态转移很多。
虽然耗时巨大,但确实是一个可行方法。
当然,我们这里会讲这个题目就说明肯定没那么复杂。没错,对于这个游戏有一个非常神奇的结论:
对于一个局面,当且仅当 A1 xor A2 xor ... xor AN =0 时,该局面为P局面。
对于这个结论的证明如下:
- 全0状态为P局面,即 Ai =0,则 A1 xor A2 xor … xor AN = 0
- 从任意一个 A1 xor A2 xor … xor AN = k ≠ 0的状态可以移动到 A1