题目描述 Description
在卡卡的房子外面,有一棵苹果树。每年的春天,树上总会结出很多的苹果。卡卡非常喜欢吃苹果,所以他一直都精心的呵护这棵苹果树。我们知道树是有很多分叉点的,苹果会长在枝条的分叉点上面,且不会有两个苹果结在一起。卡卡很想知道一个分叉点所代表的子树上所结的苹果的数目,以便研究苹果树哪些枝条的结果能力比较强。
卡卡所知道的是,每隔一些时间,某些分叉点上会结出一些苹果,但是卡卡所不知道的是,总会有一些调皮的小孩来树上摘走一些苹果。
于是我们定义两种操作:
C x | 表示编号为x的分叉点的状态被改变(原来有苹果的话,就被摘掉,原来没有的话,就结出一个苹果) |
G x | 查询编号为x的分叉点所代表的子树中有多少个苹果 |
我们假定一开始的时候,树上全都是苹果,也包括作为根结点的分叉1。
输入描述 Input Description
第一行一个数N (n<=100000)
接下来n-1行,每行2个数u,v,表示分叉点u和分叉点v是直接相连的。
再接下来一行一个数M,(M<=100000)表示询问数
接下来M行,表示询问,询问的格式如题目所述Q x或者C x
输出描述 Output Description
对于每个Q x的询问,请输出相应的结果,每行输出一个
样例输入 Sample Input
3
1 2
1 3
3
Q 1
C 2
Q 1
样例输出 Sample Output
3
2
题解:树状数组+DFS序
按照深搜的顺序给节点编号,第一次访问某节点时的编号表示当前节点在DFS序中的编号,第二次访问该节点所获得的编号表示他子树最后一个节点的DFS序,两个序号之间的所有节点的值就是子树的苹果树。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n,m,l[100003],r[100003],ans[100003],num[100003];
int point[100003],next[100003],v[100003],tot,t;
void add(int x,int y)
{
tot++; next[tot]=point[x]; point[x]=tot; v[tot]=y;
}
void build(int x)
{
l[x]=++t;
for (int i=point[x];i;i=next[i])
build(v[i]);
r[x]=t;
}
int lowbit(int x)
{
return x&(-x);
}
void change(int x,int k)
{
for (int i=x;i<=n;i+=lowbit(i))
ans[i]+=k;
}
int sum(int x)
{
int tot=0;
while(x>0)
{
tot+=ans[x];
x-=lowbit(x);
}
return tot;
}
int main()
{
while (scanf("%d",&n)==1)
{
for (int i=1;i<=n-1;i++)
{
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
build(1);
scanf("%d",&m);
for (int i=1;i<=n;i++)
{
change(l[i],1);
num[i]=1;
}
//for (int i=1;i<=n;i++)
//cout<<l[i]<<" "<<r[i]<<" "<<ans[i]<<endl;
for (int i=1;i<=m;i++)
{
char c[10]; int x;
scanf("%s%d",c,&x);
if (c[0]=='Q')
printf("%d\n",sum(r[x])-sum(l[x]-1));
else
{
if (!num[x])
change(l[x],1);
else
change(l[x],-1);
num[x]=1-num[x];
}
}
}
}