hdu 4349 Xiao Ming's Hope (Lucas定理)

Xiao Ming's Hope

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2160    Accepted Submission(s): 1469


Problem Description
Xiao Ming likes counting numbers very much, especially he is fond of counting odd numbers. Maybe he thinks it is the best way to show he is alone without a girl friend. The day 2011.11.11 comes. Seeing classmates walking with their girl friends, he coundn't help running into his classroom, and then opened his maths book preparing to count odd numbers. He looked at his book, then he found a question "C (n,0)+C (n,1)+C (n,2)+...+C (n,n)=?". Of course, Xiao Ming knew the answer, but he didn't care about that , What he wanted to know was that how many odd numbers there were? Then he began to count odd numbers. When n is equal to 1, C (1,0)=C (1,1)=1, there are 2 odd numbers. When n is equal to 2, C (2,0)=C (2,2)=1, there are 2 odd numbers...... Suddenly, he found a girl was watching him counting odd numbers. In order to show his gifts on maths, he wrote several big numbers what n would be equal to, but he found it was impossible to finished his tasks, then he sent a piece of information to you, and wanted you a excellent programmer to help him, he really didn't want to let her down. Can you help him?
 

Input
Each line contains a integer n(1<=n<=10 8)
 

Output
A single line with the number of odd numbers of C (n,0),C (n,1),C (n,2)...C (n,n).
 

Sample Input
  
  
1 2 11
 

Sample Output
  
  
2 2 8
 

Author
HIT
 

Source
 

Recommend
zhuyuanchen520   |   We have carefully selected several similar problems for you:   4340  4348  4347  4346  4345 
 

Statistic |  Submit |  Discuss | Note

题解:Lucas定理

其实就是求sigma(i=0..n)c(n,i)%2的值。

对于每一个c(n,i)%2单独看,对于n,i分解成2进制数,n=a[k]a[k-1]...a[0],m=b[k]b[k-1]...b[0]。

我们要计算不为0的个数,那么就要求不存在c(ai,bi)=0

因为2是质数,所以只要ai>=bi,c(ai,bi)就一定不为0,所以如果ai=1,那么答案*2,如果ai=0,那么答案*1;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 1003
#define LL long long
using namespace std;
int mi[20]={0,1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16};
int base[30],n;
int main()
{
	freopen("a.in","r",stdin);
	//freopen("my.out","w",stdout);
	int T=0;
	base[0]=1;
	for (int i=1;i<=28;i++) base[i]=base[i-1]*2;
	while (scanf("%d",&n)!=EOF) {
	   int ans=0;
	   while (n) {
	   	ans++;
	   	n^=n&(-n);
	   }
	   printf("%d\n",1<<ans);
	}
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值