codeforces 375D. Tree and Queries (莫队+分块)

D. Tree and Queries
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You have a rooted tree consisting of n vertices. Each vertex of the tree has some color. We will assume that the tree vertices are numbered by integers from 1 to n. Then we represent the color of vertex v as cv. The tree root is a vertex with number 1.

In this problem you need to answer to m queries. Each query is described by two integers vj, kj. The answer to query vj, kj is the number of such colors of vertices x, that the subtree of vertex vj contains at least kj vertices of color x.

You can find the definition of a rooted tree by the following link: http://en.wikipedia.org/wiki/Tree_(graph_theory).

Input

The first line contains two integers n and m (2 ≤ n ≤ 105; 1 ≤ m ≤ 105). The next line contains a sequence of integers c1, c2, ..., cn(1 ≤ ci ≤ 105). The next n - 1 lines contain the edges of the tree. The i-th line contains the numbers ai, bi (1 ≤ ai, bi ≤ nai ≠ bi) — the vertices connected by an edge of the tree.

Next m lines contain the queries. The j-th line contains two integers vj, kj (1 ≤ vj ≤ n; 1 ≤ kj ≤ 105).

Output

Print m integers — the answers to the queries in the order the queries appear in the input.

Examples
input
8 5
1 2 2 3 3 2 3 3
1 2
1 5
2 3
2 4
5 6
5 7
5 8
1 2
1 3
1 4
2 3
5 3
output
2
2
1
0
1
input
4 1
1 2 3 4
1 2
2 3
3 4
1 1
output
4
Note

A subtree of vertex v in a rooted tree with root r is a set of vertices {u : dist(r, v) + dist(v, u) = dist(r, u)}. Where dist(x, y) is the length (in edges) of the shortest path between vertices x and y.



题解:莫队+分块

对于出现次数也分块维护,每次O(sqrt(n))查询

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#define N 500003
using namespace std;
int n,m,c[N],a[N],belong[N],l[N],r[N],ans[N];
int tot,point[N],v[N],nxt[N],sz,cnt[N],num[N],block;
struct data{
	int l,r,k,id;
}q[N];
int cmp(data a,data b)
{
	return belong[a.l]<belong[b.l]||belong[a.l]==belong[b.l]&&a.r<b.r;
}
void add(int x,int y)
{
	tot++; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; 
	tot++; nxt[tot]=point[y]; point[y]=tot; v[tot]=x;
}
void dfs(int x,int fa)
{
	a[++sz]=c[x]; l[x]=sz;
	for (int i=point[x];i;i=nxt[i]){
		if (v[i]==fa) continue;
		dfs(v[i],x);
	}
	r[x]=sz;
}
void addx(int x,int val)
{
	num[belong[x]]-=v[x];
	v[x]+=val;
	num[belong[x]]+=v[x];
}
void change(int pos,int val)
{
	int t=a[pos];
	if (cnt[t]) addx(cnt[t],-1);
	cnt[t]+=val;
	if (cnt[t]) addx(cnt[t],1);
}
int query(int l,int r)
{
	int t=0;
	if (belong[l]==belong[r]){
		for (int i=l;i<=r;i++)
		 if (v[i]) t+=v[i];
		return t; 
	}
	for (int i=l;i<=belong[l]*block;i++) 
	 if (v[i]) t+=v[i];
	for (int i=(belong[r]-1)*block+1;i<=r;i++) 
	 if (v[i]) t+=v[i];
	for (int i=belong[l]+1;i<belong[r];i++)
	 t+=num[i];
	return t;
}
int main()
{
	freopen("a.in","r",stdin);
	freopen("my.out","w",stdout);
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++) scanf("%d",&c[i]);
	for (int i=1;i<n;i++) {
		int x,y; scanf("%d%d",&x,&y);
		add(x,y);
	}
	dfs(1,0); block=ceil(sqrt(n));
	for (int i=1;i<=n;i++) belong[i]=(i-1)/block+1;
	int mx=0;
	for (int i=1;i<=m;i++) {
	 scanf("%d%d",&q[i].l,&q[i].k),q[i].id=i;
	 q[i].r=r[q[i].l];  q[i].l=l[q[i].l];
	 mx=max(mx,q[i].k);
    }
    mx=max(mx,n);
    memset(v,0,sizeof(v));
	sort(q+1,q+m+1,cmp);
	block=ceil(sqrt(mx));
	for (int i=1;i<=mx;i++) belong[i]=(i-1)/block+1;
	int l=1,r=1; change(1,1);
	for (int i=1;i<=m;i++) {
		while (q[i].l<l) change(--l,1);
		while (q[i].l>l) change(l++,-1);
		while (q[i].r>r) change(++r,1);
	    while (q[i].r<r) change(r--,-1);
	    ans[q[i].id]=query(q[i].k,mx);
	}
	for (int i=1;i<=m;i++) printf("%d\n",ans[i]);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值