关于Hog的一些理解

opencv中行人检测:

检测窗口大小为128*64;

Block大小为16*16

Cell大小为8*8;

Block在检测窗口中上下移动尺寸为8*8;

1个cell的梯度直方图化成9个bin;

滑动窗口在检测图片中滑动的尺寸为8*8;

一个检测窗口共有(128/8-16/8+1)*(64/8-16/8+1)=105个block,一个block有4个cell,一个cell的hog描述子向量长度为9,所以检测窗口的hog向量长度为:105*4*9=3780

维。


Hog训练过程:

    训练过程中正样本大小统一为128*64,即检测窗口的大小;该样本图片可以包含1个或多个行人。在实际的训练过程中,正样本大小并不是正好是128*64包含

行人的图片,而是包含行人的任意图片(当然了,尺寸最好比128*64大),然后手工对这些正样本进行标注;最好自己写一个程序,每读入一张图片,就把矩形

区域的内容截取出来并缩放到统一尺寸128*64,这样,对处理过后的该图片进行hog特征提取就可以当做正样本了。

    负样本不需要统一尺寸,只需比128*64大,且图片中不能包含任何行人。实际过程中,由于是负样本,里面没有目标信息,所以不需要人工进行标注。程序

中可以对该图片随机进行截取128*64大小的图片,并提取出其hog特征作为负样本。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值