马在某个点最多可能有8种走法,用递归和回溯实现。
注:代码中,查找下一个可走坐标是从右下第一个开始的,也就是图中的4。可以通过修改a,b...h的值来改变顺序。
/**
* 马踏棋盘算法
* 递归和回溯
*
*/
public class HorseStep {
public static int X = 8;
public static int Y = 8;
public static int returnCount = 0;
/**
* 棋盘
*/
public static int chess[][] = new int[X][Y];
/**
* 找到基于(x,y)位置的下一个可走位置
* @param x
* @param y
* @param count
* @return
*/
public static int nextxy(XY xy,int count){
final int a=0,
b=1,
c=2,
d=3,
e=4,
f=5,
g=6,
h=7;
int x = xy.getX();
int y = xy.getY();
int returnInt = 0;
switch (count) {
// 从以x,y为轴心的 右下 开始
case a:
if( x+2<=X-1 && y+1<=Y-1 && chess[y+1][x+2]==0){
x +=2;
y +=1;
returnInt = 1;
}
break;
case b:
if( x+1<=X-1 && y+2<=Y-1 && chess[y+2][x+1]==0){
x +=1;
y +=2;
returnInt = 1;
}
break;
case c:
if( x-1>=0 && y+2<=Y-1 && chess[y+2][x-1]==0){
x -=1;
y +=2;
returnInt = 1;
}
break;
case d:
if( x-2>=0 && y+1<=Y-1 && chess[y+1][x-2]==0){
x -=2;
y +=1;
returnInt = 1;
}
break;
case e:
if( x-2>=0 && y-1>=0 && chess[y-1][x-2]==0){
x -=2;
y -=1;
returnInt = 1;
}
break;
case f:
if( x-1>=0 && y-2>=0 && chess[y-2][x-1]==0){
x -=1;
y -=2;
returnInt = 1;
}
break;
case g:
if( x+1<=X-1 && y-2>=0 && chess[y-2][x+1]==0){
x +=1;
y -=2;
returnInt = 1;
}
break;
case h:
if( x+2<=X-1 && y-1>=0 && chess[y-1][x+2]==0){
x +=2;
y -=1;
returnInt = 1;
}
break;
default:
break;
}
if(returnInt == 1){
xy.setX(x);
xy.setY(y);
return 1;
}
return 0;
}
/**
* 打印棋盘
*/
public static void print(){
for(int i=0;i<X;i++){
for(int j=0;j<Y;j++){
if(chess[i][j]<10)
System.out.print(chess[i][j]+" ");
else
System.out.print(chess[i][j]+" ");
}
System.out.println();
}
}
/**
* 深度优先遍历棋盘
* @param x
* @param y
* @param tag
* @return
* (x,y)为位置坐标
* tag是标记变量,每走一步 tag+1。
*/
public static int TravelChessBoard(XY xy,int tag){
// 马在某个点有八种可能的方向,用来约束查找小于八种的变量
Integer count = 0;
// 马所在位置是否可以再跳向下一个位置,0有,1无(条件:1,不出边界,2.没有走过)
int haveNextXy = 0;
int x = xy.getX();
int y = xy.getY();
// x是横轴,y是竖轴,左上角为0,0点,往右和往下递增
chess[y][x] = tag;
// 最后一步,递归的终止条件
if(X*Y == tag){
// 打印棋盘
print();
return 1;
}
// 找到马的下一个可走坐标(x1,y1),如果找到为1,否则为0.
haveNextXy = nextxy(xy, count);
while( 0==haveNextXy && count<7){
count ++;
haveNextXy = nextxy(xy, count);
}
while(haveNextXy==1){
if(TravelChessBoard(xy, tag+1)==1){
return 1;
}
// 回退后,把当前点也设置为回退后的位置
xy.setX(x);
xy.setY(y);
count++;
// 找到马的下一个可走坐标(x1,y1),如果找到flag=1,否则为0.
haveNextXy = nextxy(xy, count);
while( 0==haveNextXy && count<7){
count ++;
haveNextXy = nextxy(xy, count);
}
}
// 回退
if(haveNextXy==0){
chess[y][x]=0;
returnCount++;
}
return 0 ;
}
public static void main(String[] args) {
long begin = System.currentTimeMillis();
// 马所在位置的坐标,x是横轴,y是竖轴,左上角为0,0点,往右和往下递增
XY xy = new XY();
xy.setX(1);
xy.setY(0);
if(TravelChessBoard(xy, 1)==0){
System.out.println("马踏棋盘失败");
}
long time = System.currentTimeMillis()-begin;
System.out.println("耗时"+time+"毫秒");
System.out.println(returnCount);
}
}
class XY{
private int x;
private int y;
public int getX() {
return x;
}
public void setX(int x) {
this.x = x;
}
public int getY() {
return y;
}
public void setY(int y) {
this.y = y;
}
}
结果:
如果从(0,0)开始的话