matlab基础(1)
1-1、基本运算与函数
在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如:
>>(5*2+1.3-0.8)*10/25
ans =
4.2000
MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer),并显示其数值於萤幕上。(为简便起见,在下述各例中,我们不再印出MATLAB的提示号。)
小提示:
">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。
我们也可将上述运算式的结果设定给另一个变数x:
x = (5*2+1.3-0.8)*10^2/25
x =
42
此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。
小提示:
MATLAB
将所有变数均存成
double
的形式,所以不需经过变数宣告(
Variable declaration
)。
MATLAB
同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定。这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。
若不想让
MATLAB
每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:
y = sin(10)*exp(-0.3*4^2);
若要显示变数y的值,直接键入y即可:
>>y
y =
-0.0045
在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。下表即为MATLAB常用的基本数学函数及三角函数:
小整理:
MATLAB
常用的基本数学函数
abs(x):纯量的绝对值或向量的长度
angle(z)
:复数
z
的相角
(Phase angle)
sqrt(x):开平方
real(z)
:复数
z
的实部
imag(z)
:复数
z
的虚部
conj(z)
:复数
z
的共轭复数
round(x)
:四舍五入至最近整数
fix(x)
:无论正负,舍去小数至最近整数
floor(x)
:地板函数,即舍去正小数至最近整数
ceil(x)
:天花板函数,即加入正小数至最近整数
rat(x)
:将实数
x
化为分数表示
rats(x)
:将实数
x
化为多项分数展开
sign(x)
:符号函数
(Signum function)
。
当
x<0
时,
sign(x)=-1
;
当
x=0
时,
sign(x)=0;
当
x>0
时,
sign(x)=1
。
rem(x,y)
:求
x
除以
y
的馀数
gcd(x,y)
:整数
x
和
y
的最大公因数
lcm(x,y)
:整数
x
和
y
的最小公倍数
exp(x):自然指数
pow2(x):2的指数
log(x):以e为底的对数,即自然对数或
log2(x):以2为底的对数
log10(x):以10为底的对数
小整理:
MATLAB
常用的三角函数
sin(x):正弦函数
cos(x):馀弦函数
tan(x):正切函数
asin(x):反正弦函数
acos(x):反馀弦函数
atan(x):反正切函数
atan2(x,y):四象限的反正切函数
sinh(x):超越正弦函数
cosh(x):超越馀弦函数
tanh(x):超越正切函数
asinh(x):反超越正弦函数
acosh(x):反超越馀弦函数
atanh(x):反超越正切函数
变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算:
x = [1 3 5 2];
y = 2*x+1
y =
3 7 11 5
小提示:变数命名的规则
第一个字母必须是英文字母
字母间不可留空格
最多只能有19个字母,MATLAB会忽略多馀字母
我们可以随意更改、增加或删除向量的元素:
y(3) = 2 %
更改第三个元素
y =
3 7 2 5
y(6) = 10 %
加入第六个元素
y =
3 7 2 5 0 10
y(4) = [] %
删除第四个元素,
y =
3 7 2 0 10
在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算:
x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算
ans =
9
y(2:4)-1 % 取出y的第二至第四个元素来做运算
ans =
6 1 -1
在上例中
,
2:4
代表一个由
2
、
3
、
4
组成的向量,同样的方法可用於产生公差为
1
的等差数列:
x = 7:16
x =