Pandas中的 transform() 结合 groupby() 用法示例

该博客介绍了如何利用Python的pandas库,通过groupby和transform函数计算餐厅在所在城市的销售额占比。提供了两种方法,一种涉及groupby、sum、merge操作,另一种使用transform直接计算比例,强调了transform在保持原始数据行数不变方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,假设我们有如下餐厅数据集:

import pandas as pd

df = pd.DataFrame({
  'restaurant_id': [101,102,103,104,105,106,107],
  'address': ['A','B','C','D', 'E', 'F', 'G'],
  'city': ['London','London','London','Oxford','Oxford', 'Durham', 'Durham'],
  'sales': [10,500,48,12,21,22,14]
})

在这里插入图片描述
如果我们想知道:每个餐厅在城市中所占的销售额百分比是多少?预期得到的输出是:
在这里插入图片描述
相比于原来的数据集,多了两列,分别是某个城市所有餐厅的销售总额,以及每个餐厅在城市中所占的销售额百分比。解决方案有两个:

方案一(较麻烦):

1、使用 groupby('city') 基于城市进行分组,对于这些组中的每一个组,选中其销售额列 ['sales'],然后使用函数 apply(sum) 或者sum() 对城市的销售额进行求和。

之后,新列被重命名为 city_total_sales 并且索引被重置(注意不能漏了 reset_index() ,因为 groupby('city') 生成的索引是城市,而我们希望城市作为普通列)。

city_sales = df.groupby('city'['sales'].sum().rename('city_total_sales').reset_index()

得到的 city_sales 如下:
在这里插入图片描述
2、用 merge() 函数把 city_sales 合并回去,得到的 df_new 如下:

df_new = pd.merge(df, city_sales, how='left')

在这里插入图片描述
3、最后,求百分比并保留两位小数,结果如下:

df_new['pct'] = df_new['sales'] / df_new['city_total_sales']
df_new['pct'] = df_new['pct'].apply(lambda x: format(x, '.2%'))

在这里插入图片描述
方案二(便捷):

1
transform() 函数在执行转换后保留与原始数据集相同数量的项目。因此,使用 groupby() 然后使用 transform(sum) 会返回相同的输出,结果如下图:

df['city_total_sales'] = df.groupby('city')['sales'].transform('sum')

代码翻译过来就是:数据集基于城市进行分组,然后选定销售额列,对每组的销售额进行求和,返回一个和原列长度一样的新列
在这里插入图片描述

2

与方案一相同。

df['pct'] = df['sales'] / df['city_total_sales']
df['pct'] = df['pct'].apply(lambda x: format(x, '.2%'))

总结:可以看出,在对 DataFrame 进行分组 groupby() 之后,如果是使用 apply() 或者直接使用某个统计函数,得到的新列的长度与分组得到的组数是一样的;而如果使用 transform()得到的新列与 DataFrame 中列的长度是一样的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值