符号化转换系统的分类
1 引言
在符号化转换系统的研究中,我们可以定义五类逐步综合的符号化转换系统。对于每一类系统,我们将从有限特征刻画、算法实现、可判定属性验证以及具体示例这四个方面进行探讨。下面将详细介绍每一类符号化转换系统。
2 基本概念
2.1 商构造
商构造在将无限状态系统转换为有限状态系统时具有重要意义。对于一个转换系统 (S) 和等价关系 (\sim=),商系统 (S/{\sim=}) 的定义如下:
- (S/{\sim=}) 的状态是 (\sim=_{S}) 的等价类。
- 若存在状态 (s \in \sigma) 和状态 (t \in \tau) 使得 (t \in \delta(s)),则 (\tau \in \delta/{\sim=}(\sigma))。
- 若存在状态 (s \in \sigma) 使得 (s \in \langle p \rangle),则 (\sigma \in \langle p \rangle/{\sim=})。
2.2 状态逻辑
状态逻辑 (L) 的公式在转换系统的状态上进行解释。对于 (L) - 公式 (\phi) 和转换系统 (S),存在满足 (\phi) 的状态集合 (\llbracket \phi \rrbracket_{S})。状态逻辑的相关概念如下:
- 模型检查问题 :对于一类转换系统 (C),给定 (L) - 公式 (\phi) 和系统 (S \in C) 的状态 (s),判断 (s \in \llbracket \phi \rrbracket_{S})。