本地部署Qwen2.5-VL-7B-Instruct多模态视觉大模型(Windows篇)

本文已首发于 秋码记录

如果你也想搭建一个与秋码记录一样的网站,可以浏览我的这篇 国内 gitee.com Pages 下线了,致使众多站长纷纷改用 github、gitlab Pages 托管平台

秋码记录网站使用的主题是开源的,目前只在github.com开源。
hugo-theme-kiwi开源地址:https://github.com/zhenqicai/hugo-theme-kiwi

Qwen2.5-VL是阿里云推出的开源多模态大模型,支持图像理解、视频分析、文档结构化处理等功能。

较上一个版本Qwen2-VL有质的飞越,Qwen2.5-VL通过动态分辨率适配和窗口注意力机制,显著降低显存占用并提升推理速度,72B模型在单卡A100上推理速度提升30% 。

身在AI这股浪潮中,只要本地电脑硬件条件允许的话,我都会尝试着去部署优秀的开源大模型。

说到开源大模型,相对而言的就是闭源大模型,我们在脑海中很自然地浮现出国外的OPENAI,以及国内的百度,也就是李彦宏所说的“开源大模型,对个人是没有好处”(好像是这么说的吧)。

由于DeepSeek的冲击,据说百度将要开源大模型了,这李彦宏不是妥妥的打了自己的脸了吗?很想隔空问李彦宏一句话,难道你的脸不痛吗?

克隆Qwen2.5-VL代码及安装必须依赖

git clone https://github.com/QwenLM/Qwen2.5-VL.git

使用Python3自带的venv库,创建虚拟环境。当然你也可以使用anacondaminiconda工具进行创建python虚拟环境。

python -m venv qwen-vl-env
cd qwen-vl-env\Script
activate

之后回到Qwen2.5-VL代码的根路径下,进行必须依赖安装。

cd Qwen2.5-VL
pip install -r requirements_web_demo.txt

当然,为了可以使用GPU来推理,还需安装与你的CUDA版本匹配的pytorch

pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu121

其实pytorch依赖是包含在requirements_web_demo.txt文件中,那是CPU版本的。

而对于windows用户来说,以下这步也是多余的。

pip install qwen-vl-utils

下载模型

Qwen2.5-VL开源三个不同参数的大模型,分别是3B7B72B

Huggingface模型地址:https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5

Modelscope魔塔社区:https://modelscope.cn/collections/Qwen25-VL-58fbb5d31f1d47

运行官方的gradio demo示例

可不知是什么原因,我运行python web_demo_mm.py却出现错误,报的错误都是与gradio相关的错误信息,致使我一度怀疑,是不是需要更新gradio的依赖呢。

然而,事与愿违,报错还是一如既往报错,它可不会因为你更新了gradio依赖,就停止报错了。

在这里插入图片描述

所以呢,我就运行官方不带gradio的示例,结果却成功,这让我异常兴奋。

在这里插入图片描述

import torch
from modelscope import snapshot_download
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info

# default: Load the model on the available device(s)
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
#     "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
# )
model_dir = "E:/AI_project/Qwen2.5-VL/Qwen/Qwen2.5-VL-7B-Instruct" #snapshot_download("Qwen/Qwen2.5-VL-3B-Instruct")
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    model_dir,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
#     "Qwen/Qwen2.5-VL-7B-Instruct",
#     torch_dtype=torch.bfloat16,
#     attn_implementation="flash_attention_2",
#     device_map="auto",
# )

# default processor
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
processor = AutoProcessor.from_pretrained(model_dir,max_pixels = 1280*28*28)

# The default range for the number of visual tokens per image in the model is 4-16384.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                #"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
                "image": "E:/AI_project/Qwen2.5-VL/01-21-2025_09_58_PM.png",
                #"image": "E:/my_data/temp_img/20250222200343.jpg"
            },
            {"type": "text", "text": "描述这张图。"},
        ],
    }
]

# Preparation for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to(model.device)

# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

在这里插入图片描述

现在我让描述下这张图片。(原图是没有水印的)

在这里插入图片描述

可它把充电宝识别成了充电桩,至于其它的,还是不错。

在这里插入图片描述

我们再让它识别另一张图片。(原图是没有水印的)

在这里插入图片描述

然而这次却出乎我的意料,识别的很准确。

在这里插入图片描述

至于那个官方的gradio示例出现报错问题,等有空了再去弄吧。

### 部署 Qwen2.5-VL 的指南 #### 安装 vLLM 库 为了部署 Qwen2.5-VL-7B-Instruct 模型,首先需要安装 vLLM。鉴于当前版本的官方仓库还未正式支持此模型,应从名为 `qwen2_5_vl` 的特殊分支来完成安装过程[^1]。 ```bash pip install git+https://github.com/your-repo/vllm.git@qwen2_5_vl ``` #### 准备环境配置 Qwen2.5 系列是由阿里云开发的大规模预训练模型,在多个自然语言处理任务上表现出色。对于希望利用该模型能力的应用开发者而言,可以通过 ModelScope 社区获取并运行这些模型实例。确保本地计算资源满足最低硬件需求,并按照文档指示设置必要的软件依赖项[^2]。 #### 移动端部署方案 针对移动设备上的应用集成场景,可以考虑采用 Android 终端模拟器 Termux 来创建一个兼容的 Linux 发行版环境(如 Ubuntu)。这一步骤涉及下载和安装 Termux 应用程序至智能手机和平板电脑等终端,并通过修改包管理器镜像地址为中国大陆地区加速源的方式优化后续操作体验[^3]。 ```bash pkg update && pkg upgrade -y pkg install wget proot-distro proot-distro install ubuntu echo "deb [trusted=yes] https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal main restricted universe multiverse" | tee /etc/apt/sources.list.d/tuna.list apt-get update ``` #### 加载与启动服务 一旦上述准备工作就绪,则可通过 Python 脚本加载已准备好的权重文件初始化 Qwen2.5-VL 实例,并开启 HTTP API 接口供外部调用访: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("path/to/qwen2.5-vl-checkpoint") model = AutoModelForCausalLM.from_pretrained("path/to/qwen2.5-vl-checkpoint") device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甄齐才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值