先给出你前N个数来,a1,a2,a3,,,,an
再给出C个数,k1,k2,,,kc,C<=N,1<=ki<=N,
然后对于后面的数,第i个数为ai=a(i-k1)+a(i-k2)+...+a(i-kc),然后让你求第M个数,M<=1e18
这个通项公式显然是很类似斐波那契数的,斐波那契可以通过矩阵去求,这个显然也可以,
然后就是构造出那样一个矩阵来,矩阵快速幂就行
#include <cstdio>
#include <cstring>
#include <vector>
#include <iostream>
#include <string>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
using namespace std;
#define ll long long
#define mod 1000000009
int N, C;
ll K;
ll init[30];
ll add[30];
ll ans[30][30], matrix[30][30];
ll tmp[30][30];
void work()
{
for (int i = 0; i < N; ++i)
tmp[i][i] = 0;
for (int i = 0; i < N; ++i)
ans[i][i] = 1;
while (K)
{
if ((K & 1) > 0)
{
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
for (int k = 0; k < N; ++k)
tmp[i][j] += (ans[i][k] * matrix[k][j]) % mod;
tmp[i][j] %= mod;
}
}
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
ans[i][j] = tmp[i][j];
tmp[i][j] = 0;
}
}
}
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
for (int k = 0; k < N; ++k)
tmp[i][j] += (matrix[i][k] * matrix[k][j]) % mod;
tmp[i][j] %= mod;
}
}
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
matrix[i][j] = tmp[i][j];
tmp[i][j] = 0;
}
}
K >>= 1;
}
}
int main()
{
//freopen("input.txt", "r", stdin);
scanf("%d%I64d%d", &N, &K, &C);
for (int i = 0; i < N; ++i)
scanf("%I64d", &init[i]);
for (int i = 0; i < C; ++i)
scanf("%I64d", &add[i]);
for (int i = 1; i < N; ++i)
{
matrix[i][i - 1] = 1;
}
for (int i = 0; i < C; ++i)
{
matrix[0][add[i] - 1] = 1;
}
/*for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
printf("%I64d ", matrix[i][j]);
printf("\n");
}*/
ll sum = 0;
if (K > N)
{
K -= N;
work();
for (int i = 0; i < N; ++i)
{
sum += (ans[0][i] * init[N - 1 - i]) % mod;
}
sum %= mod;
}
else
{
sum = init[K - 1];
}
printf("%I64d\n", sum);
//system("pause");
//while (1);
return 0;
}