外文文献和中文文献关键词的提取与可视化(Python实现)

316 篇文章 ¥59.90 ¥99.00
本文介绍使用Python的NLTK和jieba库对外文和中文文献进行预处理,通过TF-IDF算法提取关键词,并利用词云图和柱状图进行可视化,以理解文献主题和内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

外文文献和中文文献关键词的提取与可视化(Python实现)

摘要:
关键词的提取和可视化对于文献研究和信息检索具有重要意义。本文介绍了使用Python进行外文文献和中文文献关键词的提取与可视化的方法。首先,我们使用自然语言处理库NLTK和中文分词库jieba对文献进行预处理。然后,使用TF-IDF算法提取文献关键词,并通过词云图和柱状图对关键词进行可视化展示。最后,我们使用Python编写代码实现了这一过程,并通过一个示例文献集进行演示。

关键词:Python,关键词提取,关键词可视化,自然语言处理,TF-IDF算法,词云图,柱状图

  1. 引言
    关键词提取和可视化是文献研究和信息检索中常用的技术手段。通过提取文献中的关键词,可以快速了解文献的主题和内容,为后续的文献分析和研究提供便利。而通过可视化展示关键词,不仅可以直观地呈现文献的关键词分布情况,还能帮助人们更好地理解和分析文献。

  2. 方法
    2.1 数据预处理
    对于外文文献,我们使用NLTK库进行预处理。首先,我们将文献转换为小写字母,并去除文献中的标点符号和停用词。然后,对文献进行分词处理,并统计每个词语的词频。

对于中文文献,我们使用jieba库进行预处理。首先,我们对文献进行分词处

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值