外文文献和中文文献关键词的提取与可视化(Python实现)

316 篇文章 ¥59.90 ¥99.00
本文介绍使用Python的NLTK和jieba库对外文和中文文献进行预处理,通过TF-IDF算法提取关键词,并利用词云图和柱状图进行可视化,以理解文献主题和内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

外文文献和中文文献关键词的提取与可视化(Python实现)

摘要:
关键词的提取和可视化对于文献研究和信息检索具有重要意义。本文介绍了使用Python进行外文文献和中文文献关键词的提取与可视化的方法。首先,我们使用自然语言处理库NLTK和中文分词库jieba对文献进行预处理。然后,使用TF-IDF算法提取文献关键词,并通过词云图和柱状图对关键词进行可视化展示。最后,我们使用Python编写代码实现了这一过程,并通过一个示例文献集进行演示。

关键词:Python,关键词提取,关键词可视化,自然语言处理,TF-IDF算法,词云图,柱状图

  1. 引言
    关键词提取和可视化是文献研究和信息检索中常用的技术手段。通过提取文献中的关键词,可以快速了解文献的主题和内容,为后续的文献分析和研究提供便利。而通过可视化展示关键词,不仅可以直观地呈现文献的关键词分布情况,还能帮助人们更好地理解和分析文献。

  2. 方法
    2.1 数据预处理
    对于外文文献,我们使用NLTK库进行预处理。首先,我们将文献转换为小写字母,并去除文献中的标点符号和停用词。然后,对文献进行分词处理,并统计每个词语的词频。

对于中文文献,我们使用jieba库进行预处理。首先,我们对文献进行分词处

### CiteSpace 知网 文献 检索 #### 使用知网进行文献检索 为了有效利用CiteSpace对特定领域内的学术文献进行分析,首先需要从中国知网(CNKI)获取所需的文献数据。当目标是在知网上查找CiteSpace相关的文献时,建议采用主题检索方式来扩大覆盖范围[^2]。 #### 导出文献记录 完成初步筛选后,对于选定的文献集应当按照如下方式进行保存以便后续导入至CiteSpace软件中: - 新建纯文本文件`1.txt`作为存储路径; - 设置导出格式为“RefWorks-CiteSpace”,这有助于保持元数据结构的一致性完整性; - 发起批量下载请求并确认操作成功执行[^3]。 #### 处理低效关键词提取问题 有时,在尝试通过CiteSpace解析中文文献中的关键字时可能会遭遇识别率偏低的情况。针对这一现象,可以考虑更新至最新版的应用程序(如v5.8 R3),同时调整参数设置以优化输出质量。另外值得注意的是,适当增加样本量也有助于提高统计显著性水平从而获得更丰富的关联模式展示[^4]。 ```python import requests from bs4 import BeautifulSoup def get_citespace_papers(): url = 'http://www.cnki.net' headers = {'User-Agent': 'Mozilla/5.0'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, "html.parser") # Note: This is a simplified example and actual implementation may vary. papers = [] for item in soup.select('.result-list .item'): title = item.find('h3').get_text(strip=True) link = item.find('a')['href'] abstract = item.find(class_='abstract').get_text(strip=True) paper_info = { 'title': title, 'link': f'{url}{link}', 'abstract': abstract } if 'CiteSpace' in title or 'CiteSpace' in abstract: papers.append(paper_info) return papers[:5] papers = get_citespace_papers() for idx, paper in enumerate(papers, start=1): print(f"{idx}. {paper['title']}\n Link: {paper['link']}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值