外文文献和中文文献关键词的提取与可视化(Python实现)
摘要:
关键词的提取和可视化对于文献研究和信息检索具有重要意义。本文介绍了使用Python进行外文文献和中文文献关键词的提取与可视化的方法。首先,我们使用自然语言处理库NLTK和中文分词库jieba对文献进行预处理。然后,使用TF-IDF算法提取文献关键词,并通过词云图和柱状图对关键词进行可视化展示。最后,我们使用Python编写代码实现了这一过程,并通过一个示例文献集进行演示。
关键词:Python,关键词提取,关键词可视化,自然语言处理,TF-IDF算法,词云图,柱状图
-
引言
关键词提取和可视化是文献研究和信息检索中常用的技术手段。通过提取文献中的关键词,可以快速了解文献的主题和内容,为后续的文献分析和研究提供便利。而通过可视化展示关键词,不仅可以直观地呈现文献的关键词分布情况,还能帮助人们更好地理解和分析文献。 -
方法
2.1 数据预处理
对于外文文献,我们使用NLTK库进行预处理。首先,我们将文献转换为小写字母,并去除文献中的标点符号和停用词。然后,对文献进行分词处理,并统计每个词语的词频。
对于中文文献,我们使用jieba库进行预处理。首先,我们对文献进行分词处