java线程池大小设置

一般说来,大家认为线程池的大小经验值应该这样设置:(其中N为CPU的个数)

  • 如果是CPU密集型应用,则线程池大小设置为N+1
  • 如果是IO密集型应用,则线程池大小设置为2N+1
    这个说法到底是不是正确的呢?
    其实这是极不正确的。那为什么呢?
    首先我们从反面来看,假设这个说法是成立的,那我们在一台服务器上部署多少个服务都无所谓了。因为线程池的大小只能服务器的核数有关,所以这个说法是不正确的。那具体应该怎么设置大小呢?
    假设这个应用是两者混合型的,其中任务即有 CPU 密集,也有 IO 密集型的,那么我们改怎么设置呢?是不是只能抛硬盘来决定呢?
    在这里插入图片描述
    Little’s Law(利特尔法则)
    一个系统请求数等于请求的到达率与平均每个单独请求花费的时间之乘积
    同样,我们可以使用利特尔法则(Little’s law)来判定线程池大小。我们只需计算请求到达率和请求处理的平均时间。然后,将上述值放到利特尔法则(Little’s law)就可以算出系统平均请求数。估算公式如下
    线程池大小 = ((线程 IO time + 线程 CPU time )/线程 CPU time ) CPU数目*
    具体实践
    通过公式,我们了解到需要 3 个具体数值
    一个请求所消耗的时间 (线程 IO time + 线程 CPU time)
    该请求计算时间 (线程 CPU time)
    CPU 数目

CPU 计算时间 = 请求总耗时 - CPU IO time
假设该请求有一个查询 DB 的操作,只要知道这个查询 DB 的耗时(CPU IO time),计算的时间不就出来了嘛,我们看一下怎么才能简洁,明了的记录 DB 查询的耗时

如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。
但是,IO优化中,这样的估算公式可能更适合:
最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目
因为很显然,线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。
下面举个例子:
比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)8=32。这个公式进一步转化为:
最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1) CPU数目

刚刚说到的线程池大小的经验值,其实是这种公式的一种估算值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值