笔记|统计学习方法:朴素贝叶斯

  • 联合概率

朴素贝叶斯是生成模型,由训练数据学习联合分布概率 P ( X , Y ) P(X,Y) P(X,Y),求得后验概率为: P ( Y ∣ X ) P(Y|X) P(YX)。联合概率分布为:
P ( X , Y ) = P ( Y ) P ( X ∣ Y ) P(X,Y)=P(Y)P(X|Y) P(X,Y)=P(Y)P(XY)
概率估计方法是极大似然法,或者贝叶斯估计。

  • 基本假设:条件独立性

P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ⋅ ⋅ ⋅ , X ( n ) = x ( n ) ∣ Y = c k ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) P(X=x|Y=c_k)=P(X^{(1)}=x^{(1)},···,X^{(n)}=x^{(n)}|Y=c_k)=\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_k) P(X=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck)=j=1nP(X(j)=x(j)Y=ck)

  • 确定x的类别

  • 1. 计算先验概率以及条件概率

P ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) N , k = 1 , 2 , ⋅ ⋅ ⋅ , K P(Y=c_k)=\frac{\sum_{i=1}^N I(y_i=c_k)}{N},k=1,2,···,K P(Y=ck)=Ni=1NI(yi=ck),k=1,2,K

P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) ∑ i = 1 N I ( y i = c K ) P(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum_{i=1}^NI(x_i^{(j)}=a_{jl},y_i=c_k)}{\sum_{i=1}^NI(y_i=c_K)} P(X(j)=ajlY=ck)=i=1NI(yi=cK)i=1NI(xi(j)=ajl,yi=ck)

j , l , k = 1 , 2 , 3 , ⋅ ⋅ ⋅ , K j,l,k=1,2,3,···,K j,l,k=1,2,3,,K

  • 2. 对于给定的实例 x = ( x ( 1 ) , x ( 2 ) , ⋅ ⋅ ⋅ , x ( n ) ) T x=(x^{(1)},x^{(2)},···,x^{(n)})^T x=(x(1),x(2),,x(n))T,计算

P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) , k = 1 , 2 , 3 , ⋅ ⋅ ⋅ , K P(Y=c_k)\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_k),k=1,2,3,···,K P(Y=ck)j=1nP(X(j)=x(j)Y=ck),k=1,2,3,,K

  • 3. 确定实例的类

y = a r g m a x c k P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) y=argmax_{c_k}P(Y=c_k)\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_k) y=argmaxckP(Y=ck)j=1nP(X(j)=x(j)Y=ck)

  • 确定x的类的例子

在这里插入图片描述

在这里插入图片描述

  • 利用贝叶斯定理与联合概率进行分类预测

贝叶斯定理
P ( Y ∣ X ) = P ( X , Y ) P ( X ) P(Y|X)=\frac{P(X,Y)}{P(X)} P(YX)=P(X)P(X,Y)

= P ( Y ) P ( X ∣ Y ) ∑ Y P ( Y ) P ( X ∣ Y ) =\frac{P(Y)P(X|Y)}{\sum_Y P(Y)P(X|Y)} =YP(Y)P(XY)P(Y)P(XY)

将输入x分到后验概率最大的类y

y = a r g m a x c k P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) y=argmax_{c_k}P(Y=c_k)\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_k) y=argmaxckP(Y=ck)j=1nP(X(j)=x(j)Y=ck)

后验概率最大等价于0-1损失函数时的期望风险最小化

  • 贝叶斯估计

条件概率

P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + λ ∑ i = 1 N I ( y i = c K ) + S j λ P(X^{(j)}=a_{jl}|Y=c_k)=\frac{\sum_{i=1}^NI(x_i^{(j)}=a_{jl},y_i=c_k)+\lambda}{\sum_{i=1}^NI(y_i=c_K)+S_j\lambda} P(X(j)=ajlY=ck)=i=1NI(yi=cK)+Sjλi=1NI(xi(j)=ajl,yi=ck)+λ

X ( j ) X^{(j)} X(j)的取值有 S j S_j Sj

  • λ ≥ 0 \lambda \geq 0 λ0 称作极大似然估计
  • λ = 1 \lambda = 1 λ=1 称作拉普拉斯平滑

先验概率

P λ ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) + λ N + K λ P_\lambda(Y=c_k)=\frac{\sum_{i=1}^N I(y_i=c_k)+\lambda}{N+K\lambda} Pλ(Y=ck)=N+Kλi=1NI(yi=ck)+λ

  • 贝叶斯估计例子

在这里插入图片描述

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值