Latent Semantic Analysis Python实战

418 篇文章 ¥99.90 ¥299.90
本文介绍了潜在语义分析(LSA)的基本概念,并通过Python实战,展示了如何使用gensim和scikit-learn库进行文本预处理、向量化及降维,以捕捉文本中的语义信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Latent Semantic Analysis Python实战

潜在语义分析(Latent Semantic Analysis,LSA)是一种文本分析技术,可以将大量的文档转换成向量形式,便于进行文本挖掘和信息检索。LSA的核心思想是将文本中的单词转换成向量,并将文本表示为多个向量的线性组合。这种方法可以有效地捕捉文本中的语义信息,从而提高文本处理的准确性和效率。

下面我们来看看如何使用Python实现潜在语义分析。首先我们需要安装gensim库和scikit-learn库,这两个库都提供了实现LSA的功能。安装完成后,我们可以利用gensim库来读取文本数据并进行预处理,例如去除停用词、词干化等。接着我们可以使用scikit-learn库来对文本进行向量化和降维。

下面是一个简单的示例代码,演示了如何使用gensim和scikit-learn库进行潜在语义分析:

import numpy as np
from gensim import corpora, models
from sklearn.decomposition import TruncatedSVD

# 读取文本数据
texts = [
    "The quick brown fox jumps over the lazy dog",
    "I like to eat broccoli and bananas",
    "The fox is very quick and agile",
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_welike

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值