文献阅读:Training language models to follow instructions with human feedback

1. 文献工作简介

这篇文章是OpenAI在上年提出的一篇对于GPT3的改进文章,提出了InstructGPT。

其主体的思路应该是借鉴了Google的Flan。Google的Flan这个工作中提出,使用标注数据对预训练模型进行Finetune,即使对于标注数据没有涉及的新的领域任务,模型的效果也是可以提升的,也就是说,对于大模型而言,使用标注数据进行finetune可以进一步提升模型的泛化性。

另外,在InstructGPT当中,除了引入了标注数据进行finetune之外,文中还加入了强化学习的方式,使用人工数据来对模型进行了进一步的优化。

而关于模型的实际效果,除了文中给出的这些结果之外,另外一个相关的工作大概会更为广为人知,即ChatGPT。

这个牛逼的模型基本就是按照InstructGPT的方式进行训练然后放出端口的,其效果就无需赘述了,委实是有点牛逼了。

2. 模型优化设计

下面,我们来看一下文中具体给出的模型优化方案。

如前所述,InstructGPT模型的主要优化点包括了以下一些内容:

  1. 加入了多种任务的标注数据进行了finetune;
  2. 在Prompt的基础上加入了Instruct部分,进一步固化生成方向;
  3. 使用人工交互数据进行了强化学习;

整体的训练步骤如下图所示:

在这里插入图片描述

可以看到,整体上模型训练可以分为三部分:

  1. 使用监督数据进行finetune;
  2. 使用人类行为数据进行RM模型训练;
  3. 使用2中的RM模型对莫i选哪个进行强化学习优化;

而关于模型训练使用的数据,具体如下:

在这里插入图片描述

其中,表1是不同类型的数据分布,表2是使用的prompt样例。

3. 实验结果

下面,我们来看一下文中给出的实验结果。

首先,我们来看一下整体的人工评测效果如下:

在这里插入图片描述

在这里插入图片描述

可以看到:

  • Prompt、Finetune以及RL对于模型均表达为正向的效果。

然后,我们来看一下模型在公开数据集上的效果表达:

在这里插入图片描述

文中同样对不同的Prompt的效果进行了考察,得到结果如下:

在这里插入图片描述

最后,文中给出了一些具体的case对比如下:

在这里插入图片描述
在这里插入图片描述

可以看到:

  • 整体来看,InstructGPT对于具体任务的返回的返回结果表达上是是全面优于GPT3的。

4. 总结 & 思考

整体上来说,InstructGPT较之原版的GPT3在生成任务的指向性上更加明确,生成结果的正确性也更高,但即便如此,碍于GPT模型LLM的本质,它依然无法避免的可能会生成错误的结果,这方面很难彻底规避。

但即便如此,InstructGPT,或者说ChatGPT的效果确实毋庸置疑的,毕竟都让Google感觉惊慌了,我司也打算大规模加入到Edge以及Office软件当中,未来LLM的前景基本是没啥好质疑的了,虽然现阶段的LLM到底能否经得起使用,这方面我倒是暂时呈观望态度,虽然有点唱反调,但是毕竟做过生成任务,这方面对于LLM结果的可靠度实在是没有那么自信……

Anyway,让子弹再飞一会吧……

springboot003基于Springboot+Vue的图书个性化推荐系统的设计与实现毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
自然语言处理技术日益发展,就如何让机器能够理解和执行人类指令这一问题,成为了研究的重要方向。这涉及到如何将自然语言和机器学习模型有效地融合,从而让机器能够通过自然语言理解人类的指令,并按照指令进行行动。 据目前的研究表明,最有效的方法是对语言模型进行训练,通过数据驱动的方法,让机器能够理解人类的指令,从而完成特定的任务。要实现这一目标,需要采用一定的语言模型和机器学习算法。 其中,最流行的算法包括序列标注、文本生成、神经机器翻译等。这些算法都能通过对文本进行深度学习来训练模型,从而让机器能够更好地理解指令和完成任务。 然而,一些挑战依然存在。首先,不同的语言之间存在巨大的差异,因此需要针对不同的语言训练不同的模型。其次,语言模型需要和任务场景建立紧密的联系,才能更好地理解和执行指令。 最后,持续的技术进步也需要不断地改进和更新语言模型,以保证在不同的场景下,机器能够更好地理解和执行人类的指令。这意味着,对数据的收集和处理,对算法和模型的优化,都需要不断地实践和创新。 总之,针对语言模型的训练和优化,是实现机器按照人类指令执行的关键。只有通过不断的探索和实践,才能让机器更好地理解我们的指令,并更加有效地完成任务。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值