## 测试命令:列出mysql中所有的库、表
sqoop list-databases \
--connect jdbc:mysql://doit03:3306 \
--username root \
--password root
sqoop list-tables \
--connect jdbc:mysql://doit03:3306/doit_mall \
--username root \
--password root
## 测试命令:从mysql中导入数据到hdfs的指定目录
## 并行度的问题补充:一个maptask从mysql中获取数据的速度约为4-5m/s,而mysql服务器的吞吐量40-50M/s
## 那么,在mysql中的数据量很大的场景下,可以考虑增加maptask的并行度来提高数据迁移速度
## -m就是用来指定maptask的并行度
## 思考:maptask一旦有多个,那么它是怎么划分处理任务?
## 确保sqoop把目标目录视作hdfs中的路径,需要参数配置正确:
# core-site.xml
# <property>
# <name>fs.defaultFS</name>
# <value>hdfs://h1:8020/</value>
# </property>
## 确保sqoop把mr任务提交到yarn上运行,需要参数配置正确:
# mapred-site.xml
# <property>
# <name>mapreduce.framework.name</name>
# <value>yarn</value>
# </property>
sqoop import \
--connect jdbc:mysql://h3:3306/ry \
--username root \
--password haitao.211123 \
--table doit_jw_stu_base \
--target-dir /sqoopdata/doit_jw_stu_base \
--fields-terminated-by ',' \
#如果目标路径已存在则删除
--delete-target-dir \
--split-by stu_id \
-m 2
# 可以指定要生成的文件的类型
--as-avrodatafile
--as-parquetfile
--as-sequencefile
--as-textfile
## 如果需要压缩
--compression-codec gzip
## 空值处理
# 输入方向:
--input-null-non-string <null-str>
--input-null-string <null-str>
# 输出方向:
--null-non-string <null-str>
--null-string <null-str>
## 如果没有数字主键,也可以使用文本列来作为切分task的参照,但是需要增加一个-D参数,如下
sqoop import -Dorg.apache.sqoop.splitter.allow_text_splitter=true \
--connect jdbc:mysql://h3:3306/ry \
--username root \
--password root \
--table noid \
--target-dir /sqooptest3 \
--fields-terminated-by ',' \
--split-by name \
-m 2
## 导入mysql数据到hive
## 它的实质: 是先将数据从mysql导入hdfs,然后利用hive的元数据操作jar包,去hive的元数据库中生成相应的元数据,并将数据文件导入hive表目录
sqoop import \
--connect jdbc:mysql://h3:3306/ry \
--username root \
--password haitao.211123 \
--table doit_jw_stu_base \
--hive-import \
--hive-table yiee_dw.doit_jw_stu_base \
--delete-target-dir \
--as-textfile \
--fields-terminated-by ',' \
--compress \
--compression-codec gzip \
--split-by stu_id \
--null-string '\\N' \
--null-non-string '\\N' \
--hive-overwrite \
-m 2
# --hive-database xdb
## 条件导入: --where
sqoop import \
--connect jdbc:mysql://h3:3306/ry \
--username root \
--password haitao.211123 \
--table doit_jw_stu_base \
--hive-import \
--hive-table yiee_dw.doit_jw_stu_base2 \
--delete-target-dir \
--as-textfile \
--fields-terminated-by ',' \
--compress \
--compression-codec gzip \
--split-by stu_id \
--null-string '\\N' \
--null-non-string '\\N' \
--hive-overwrite \
--where "stu_age>25" \
-m 2
## 条件导入: --columns 指定要导的字段
sqoop import \
--connect jdbc:mysql://h3:3306/ry \
--username root \
--password haitao.211123 \
--table doit_jw_stu_base \
--hive-import \
--hive-table yiee_dw.doit_jw_stu_base3 \
--delete-target-dir \
--as-textfile \
--fields-terminated-by ',' \
--compress \
--compression-codec gzip \
--split-by stu_id \
--null-string '\\N' \
--null-non-string '\\N' \
--hive-overwrite \
--where "stu_age>25" \
--columns "stu_id,stu_name,stu_phone" \
-m 2
## 查询导入: --query
# 有了--query,就不要有--table了,也不要有--where了,也不要有--columns了
## query自由查询导入时,sql语句中必须带 $CONDITIONS条件 : where $CONDITIONS ,要么 where id>20 and $CONDITIONS
## 为什么呢?因为sqoop要将你的sql语句交给多个不同的maptask执行,每个maptask执行sql时肯定要按任务规划加范围条件,
## 所以就提供了这个$CONDITIONS作为将来拼接条件的占位符
sqoop import \
--connect jdbc:mysql://h3:3306/ry \
--username root \
--password haitao.211123 \
--hive-import \
--hive-table yiee_dw.doit_jw_stu_base4 \
--as-textfile \
--fields-terminated-by ',' \
--compress \
--compression-codec gzip \
--split-by stu_id \
--null-string '\\N' \
--null-non-string '\\N' \
--hive-overwrite \
--query 'select stu_id,stu_name,stu_age,stu_term from doit_jw_stu_base where stu_createtime>"2019-09-24 23:59:59" and stu_sex="1" and $CONDITIONS' \
--target-dir '/user/root/tmp' \
-m 2
## --query可以支持复杂查询(包含join、子查询、分组查询)但是,一定要去深入思考你的sql的预期运算逻辑和maptask并行分任务的事实!
# --query "select id,member_id,order_sn,receiver_province from doit_mall.oms_order where id>20 and \$CONDITIONS"
# --query 'select id,member_id,order_sn,receiver_province from doit_mall.oms_order where id>20 and $CONDITIONS'
sqoop import \
--connect jdbc:mysql://h3:3306/ry \
--username root \
--password haitao.211123 \
--hive-import \
--hive-table yiee_dw.doit_jw_stu_base6 \
--as-textfile \
--fields-terminated-by ',' \
--compress \
--compression-codec gzip \
--split-by id \
--null-string '\\N' \
--null-non-string '\\N' \
--hive-overwrite \
--query 'select b.id,a.stu_id,a.stu_name,a.stu_phone,a.stu_sex,b.stu_zsroom from doit_jw_stu_base a join doit_jw_stu_zsgl b on a.stu_id=b.stu_id where $CONDITIONS' \
--target-dir '/user/root/tmp' \
-m 2
## --增量导入 1 --根据一个递增字段来界定增量数据
sqoop import \
--connect jdbc:mysql://h3:3306/ry \
--username root \
--password haitao.211123 \
--table doit_jw_stu_zsgl \
--hive-import \
--hive-table yiee_dw.doit_jw_stu_zsgl \
--split-by id \
--incremental append \
--check-column id \
--last-value 40 \
-m 2
## --增量导入 2 --根据修改时间来界定增量数据, 要求必须有一个时间字段,且该字段会跟随数据的修改而修改
## lastmodified 模式下的增量导入,不支持hive导入
sqoop import \
--connect jdbc:mysql://h3:3306/ry \
--username root \
--password haitao.211123 \
--table doit_jw_stu_zsgl \
--target-dir '/sqoopdata/doit_jw_stu_zsgl' \
--incremental lastmodified \
--check-column stu_updatetime \
--last-value '2019-09-30 23:59:59' \
--fields-terminated-by ',' \
--merge-key id \
-m 1
# 导入后的数据是直接追加,还是进行新旧合并,两个选择:
--append # 导入的增量数据直接以追加的方式进入目标存储
--merge-key id \ #导入的增量数据不会简单地追加到目标存储,还会将新旧数据进行合并
## 附录: 数据导入参数大全!
Table 3. Import control arguments:
Argument Description
--append Append data to an existing dataset in HDFS
--as-avrodatafile Imports data to Avro Data Files
--as-sequencefile Imports data to SequenceFiles
--as-textfile Imports data as plain text (default)
--as-parquetfile Imports data to Parquet Files
--boundary-query <statement> Boundary query to use for creating splits
--columns <col,col,col…> Columns to import from table
--delete-target-dir Delete the import target directory if it exists
--direct Use direct connector if exists for the database
--fetch-size <n> Number of entries to read from database at once.
--inline-lob-limit <n> Set the maximum size for an inline LOB
-m,--num-mappers <n> Use n map tasks to import in parallel
-e,--query <statement> Import the results of statement.
--split-by <column-name> Column of the table used to split work units. Cannot be used with --autoreset-to-one-mapper option.
--split-limit <n> Upper Limit for each split size. This only applies to Integer and Date columns. For date or timestamp fields it is calculated in seconds.
--autoreset-to-one-mapper Import should use one mapper if a table has no primary key and no split-by column is provided. Cannot be used with --split-by <col> option.
--table <table-name> Table to read
--target-dir <dir> HDFS destination dir
--temporary-rootdir <dir> HDFS directory for temporary files created during import (overrides default "_sqoop")
--warehouse-dir <dir> HDFS parent for table destination
--where <where clause> WHERE clause to use during import
-z,--compress Enable compression
--compression-codec <c> Use Hadoop codec (default gzip)
--null-string <null-string> The string to be written for a null value for string columns
--null-non-string <null-string> The string to be written for a null value for non-string columns
## sqoop导出数据
sqoop export \
--connect jdbc:mysql://h3:3306/dicts \
--username root \
--password haitao.211123 \
--table dau_t \
--export-dir '/user/hive/warehouse/dau_t' \
--batch # 以batch模式去执行sql
## 控制新旧数据导到mysql时,选择更新模式
sqoop export \
--connect jdbc:mysql://h3:3306/doit_mall \
--username root \
--password root \
--table person \
--export-dir '/export3/' \
--input-null-string 'NaN' \
--input-null-non-string 'NaN' \
--update-mode allowinsert \
--update-key id \
--batch
## 附录:export控制参数列表
Table 29. Export control arguments:
Argument Description
--columns <col,col,col…> Columns to export to table
--direct Use direct export fast path
--export-dir <dir> HDFS source path for the export
-m,--num-mappers <n> Use n map tasks to export in parallel
--table <table-name> Table to populate
--call <stored-proc-name> Stored Procedure to call
--update-key <col-name> Anchor column to use for updates. Use a comma separated list of columns if there are more than one column.
--update-mode <mode> Specify how updates are performed when new rows are found with non-matching keys in database.
Legal values for mode include updateonly (default) and allowinsert.
--input-null-string <null-string> The string to be interpreted as null for string columns
--input-null-non-string <null-string> The string to be interpreted as null for non-string columns
--staging-table <staging-table-name> The table in which data will be staged before being inserted into the destination table.
--clear-staging-table Indicates that any data present in the staging table can be deleted.
--batch Use batch mode for underlying statement execution.
## 附录:
-- mysql修改库、表编码
修改库的编码:
mysql> alter database db_name character set utf8;
修改表的编码:
mysql> ALTER TABLE table_name CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_ci;
多易教育,专注大数据培训; 课程引领市场,就业乘风破浪
[多易教育官网地址](https://www.51doit.cn/?utm_platform=csdn&utm_campain=coupon)
https://www.51doit.cn
[多易教育在线学习平台](https://v.51doit.cn/?utm_platform=csdn_ck)
https://v.51doit.cn