1046 Shortest Distance

1046 Shortest Distance (20 point(s))

The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.

Input Specification:

Each input file contains one test case. For each case, the first line contains an integer N (in [3,10​5​​]), followed by Ninteger distances D​1​​ D​2​​ ⋯ D​N​​, where D​i​​ is the distance between the i-th and the (i+1)-st exits, and D​N​​ is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (≤10​4​​), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 10​7​​.

Output Specification:

For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.

Sample Input:

5 1 2 4 14 9
3
1 3
2 5
4 1

Sample Output:

3
10
7

简单模拟。

常规方法会超时(case#2不能通过,17分),用hashTable初始化sum[],记录从1到i+1的元素和,为后面的每次询问准备,减小复杂度。 

TLE总结:1. 采用scanf、printf输入输出;2. 空间换时间。特别是查询问题(本题)、素数筛法等。

#include<iostream>
using namespace std;
const int N = 1e5+7; 
int num[N]={0};int sum[N]={0};int n;
void init(){
	for(int i=1;i<=n;i++) sum[i]=sum[i-1]+num[i];//sum[i] 从1到i+1的距离 
}
int shortdis(int p1,int p2){
	if(p1==p2) return 0;
	if(p1>p2){
		int tmp = p1;p1 = p2;p2 = tmp;
	}
	int a1 = sum[p2-1]-sum[p1-1];
	int a2 = sum[n]-a1;
	return a1>a2?a2:a1;
}
int main(void){
	int m,p1,p2;cin>>n;
	for(int i=1;i<=n;i++) cin>>num[i];
	init();
	cin>>m;
	while(m--){
		cin>>p1>>p2;
		int ans = shortdis(p1,p2);
		cout<<ans<<endl;
	}
	return 0;
}

 

Every year the cows hold an event featuring a peculiar version of hopscotch that involves carefully jumping from rock to rock in a river. The excitement takes place on a long, straight river with a rock at the start and another rock at the end, L units away from the start (1 ≤ L ≤ 1,000,000,000). Along the river between the starting and ending rocks, N (0 ≤ N ≤ 50,000) more rocks appear, each at an integral distance Di from the start (0 < Di < L). To play the game, each cow in turn starts at the starting rock and tries to reach the finish at the ending rock, jumping only from rock to rock. Of course, less agile cows never make it to the final rock, ending up instead in the river. Farmer John is proud of his cows and watches this event each year. But as time goes by, he tires of watching the timid cows of the other farmers limp across the short distances between rocks placed too closely together. He plans to remove several rocks in order to increase the shortest distance a cow will have to jump to reach the end. He knows he cannot remove the starting and ending rocks, but he calculates that he has enough resources to remove up to M rocks (0 ≤ M ≤ N). FJ wants to know exactly how much he can increase the shortest distance *before* he starts removing the rocks. Help Farmer John determine the greatest possible shortest distance a cow has to jump after removing the optimal set of M rocks. Input Line 1: Three space-separated integers: L, N, and M Lines 2..N+1: Each line contains a single integer indicating how far some rock is away from the starting rock. No two rocks share the same position. Output Line 1: A single integer that is the maximum of the shortest distance a cow has to jump after removing M rocks Sample Inputcopy Outputcopy 25 5 2 2 14 11 21 17 4 Hint Before removing any rocks, the shortest jump was a jump of 2 from 0 (the start) to 2. After removing the rocks at 2 and 14, the shortest required jump is a jump of 4 (from 17 to 21 or from 21 to 25).
07-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值