7-9 还原二叉树(25 point(s))(根据前序遍历和中序遍历建树)

7-9 还原二叉树(25 point(s))

给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度。

输入格式:

输入首先给出正整数N(50),为树中结点总数。下面两行先后给出先序和中序遍历序列,均是长度为N的不包含重复英文字母(区别大小写)的字符串。

输出格式:

输出为一个整数,即该二叉树的高度。

输入样例:

9
ABDFGHIEC
FDHGIBEAC

输出样例:

5

根据前序和中序判断后序和根据中序和后序判断前序代码类似,只需稍微改动数组即可

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int n;
char pre[60],in[60];
struct TNode{
	int Data;
	struct TNode* Left;
	struct TNode* Right;
};//二叉树的结构体 
typedef struct TNode* Tree;
Tree restoreTree(char pre[],char in[],int n){//还原二叉树的函数 
	int i;
	char lpre[60],rpre[60];
	char lin[60],rin[60];
	int n1 = 0,n2 = 0;//n1记录前序遍历序列的左子树长度n2则记录前序遍历序列的右子树长度 
	int m1 = 0,m2 = 0;//m1记录中序遍历序列的左子树长度m2记录中序遍历序列右子树长度
	if(n==0){//如果长度为零说明这可子树建完了返回NULL 
		return NULL;
	}
	Tree T = (Tree)malloc(sizeof(struct TNode));
	if(T==NULL){
		return NULL;//若内存满了,返回NULL; 
	}
	T->Data = pre[0];//每一次,一定是前序遍历的第一个作为根节点,然后再去建左右子树
	//下面是关键,通过根节点把中序遍历分出左右子树,然后再根据这个分好的长度,再把前序遍历分成相同长度,依次确定根节点,递归实现
	//分中序遍历序列 
	for(i = 0; i < n; i++){
		if(i<=n1&&in[i]!=pre[0]){//中序遍历被根节点分开的左子树的点 
			lin[n1] = in[i];
			n1++;
		}
		else if(in[i]!=pre[0]){//右子树的点,注意是else if,因为这个时候i是大于n1的 
			rin[n2] = in[i];
			n2++;
		}
	}
	//分前序遍历序列,注意!这里从1开始循环,因为0号元素作为根 
	for(i = 1; i < n; i++){
		if(i<(n1+1)){
			lpre[m1] = pre[i];
			m1++;
		}
		else{
			rpre[m2] = pre[i];
			m2++;
		}
	}
	T->Left = restoreTree(lpre,lin,n1);
	T->Right = restoreTree(rpre,rin,n2);
	return T;//最后一定要return这颗树,要不然怎么算高。。。 
}
int getHight(Tree BST){//得到树的高度,已知左右树高,树高为max(左树高,右树高)+1; 
	int lh,rh;
	if(BST==NULL){
		return 0;
	}
	else {
		lh = getHight(BST->Left);
		rh = getHight(BST->Right);
	    return (lh>rh?lh:rh)+1;
	} 
	
}
int main(){
	scanf("%d",&n);
	scanf("%s",pre);
	scanf("%s",in);//输入 
	Tree BST = NULL;
	BST = restoreTree(pre,in,n);//建树 
	int hight;
	hight = getHight(BST);//求高 
	printf("%d\n",hight);//输出 
	return 0;
}

 
展开阅读全文

没有更多推荐了,返回首页