算法训练 矩阵乘方

问题描述
  给定一个矩阵A,一个非负整数b和一个正整数m,求A的b次方除m的余数。
  其中一个nxn的矩阵除m的余数得到的仍是一个nxn的矩阵,这个矩阵的每一个元素是原矩阵对应位置上的数除m的余数。
  要计算这个问题,可以将A连乘b次,每次都对m求余,但这种方法特别慢,当b较大时无法使用。下面给出一种较快的算法(用A^b表示A的b次方):
  若b=0,则A^b%m=I%m。其中I表示单位矩阵。
  若b为偶数,则A^b%m=(A^(b/2)%m)^2%m,即先把A乘b/2次方对m求余,然后再平方后对m求余。
  若b为奇数,则A^b%m=(A^(b-1)%m)*a%m,即先求A乘b-1次方对m求余,然后再乘A后对m求余。
  这种方法速度较快,请使用这种方法计算A^b%m,其中A是一个2x2的矩阵,m不大于10000。
输入格式
  输入第一行包含两个整数b, m,第二行和第三行每行两个整数,为矩阵A。
输出格式
  输出两行,每行两个整数,表示A^b%m的值。
样例输入
2 2
1 1
0 1
样例输出
1 0
0 1

#include <iostream>
using namespace std;
void copy(int a[][2], int b[][2])
{
    int i, j;
    for(i=0; i<2; i++){
        for(j=0; j<2; j++){
            a[i][j] = b[i][j];
        }
    }
}
void cal(int a[][2], int b[][2], int m)
{
    int i,k,j,sum,t[2][2];
    for(i=0;i<2;i++)
    {
        for(j=0;j<2;j++)
        {
            sum=0;
            for(k=0;k<2;k++)
            {
                sum+=a[i][k]*b[k][j];
            }
            t[i][j]=sum%m;
        }
    }
    copy(a,t);
}
void getResult(int a[][2],int b,int m)
{
    int i,j;
    if(b==0)
    {
        for(i=0;i<2;i++)
        {
            for(j=0;j<2;j++)
            {
                if(i==j)
                {
                    a[i][j]=1%m;
                }
                else
                    a[i][j]=0;
            }
        }
        return;
    }
    if(b%2!=0)
    {
        int t[2][2];
        copy(t,a);
        getResult(a, b-1, m);
        cal(a, t, m);
    }
    else
    {
        getResult(a, b/2, m);
        cal(a, a, m);
    }

}
int main()
{
    int i, j;
    int b, m, a[2][2];
    cin>>b>>m;
    for(i=0;i<2;i++)
    {
        for(j=0;j<2;j++)
        {
            cin>>a[i][j];
        }
    }
    getResult(a, b, m);
    for(i=0;i<2;i++)
    {
        for(j=0;j<2;j++)
        {
            cout<<a[i][j]<<" ";
        }
        cout<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值