skip32

在某些应用场景下,需要对数字进行加密,skip32无疑是一种很实用的算法,网上有python的源码(https://bitbucket.org/anuraguniyal/skip32.py/src/403577f22bc2300b30b746526f52b6cf3c8cad51/skip32.py?at=master),可惜没有java的版本。下面送上自己写的java版本:


import java.nio.ByteBuffer;
import java.nio.ByteOrder;

public class Skip32 {
	public static void main(String[] args) {
		long number = 4294967295L;
		String key = "djwiji6789";
		String enumber = skip32encrypt(number, key);
		Long dnumber = skip32decrypt(enumber, key);
		System.out.println(enumber);
		System.out.println(dnumber);
	}

	public static String skip32encrypt(long number, String key) {
		return Long.toString(skip32(number, key, true), 36);
	}

	public static long skip32decrypt(String base36text, String key) {
		return skip32(Long.parseLong(base36text, 36), key, false);
	}

	private static long skip32(long number, String key, boolean encrypt) {
		ByteBuffer buffer = ByteBuffer.allocate(8);
		buffer.order(ByteOrder.LITTLE_ENDIAN);
		buffer.putLong(number);
		byte[] b = buffer.array();
		int[] a = new int[b.length];
		for (int i = 0; i < b.length; i++) {
			a[i] = b[i] & 0xFF;
		}

		int buf[] = new int[4];
		for (int i = 0; i < 4; i++) {
			buf[i] = a[i];
		}

		int[] k = new int[10];
		for (int i = 0; i < k.length; i++) {
			k[i] = key.codePointAt(i);
		}

		_skip32(k, buf, encrypt);

		int index = 0;
		int firstByte = (0x000000FF & buf[index]);
		int secondByte = (0x000000FF & buf[index + 1]);
		int thirdByte = (0x000000FF & buf[index + 2]);
		int fourthByte = (0x000000FF & buf[index + 3]);

		long anUnsignedInt = ((long) (fourthByte << 24 | thirdByte << 16
				| secondByte << 8 | firstByte)) & 0xFFFFFFFFL;
		return anUnsignedInt;
	}

	private static void _skip32(int[] key, int[] buf, boolean encrypt) {

		int k; 
		int i; 
		int kstep;
		int wl, wr;

		if (encrypt) {
			kstep = 1;
			k = 0;
		} else {
			kstep = -1;
			k = 23;
		}

		wl = ((buf[0] << 8) + buf[1]);
		wr = ((buf[2] << 8) + buf[3]);

		for (i = 0; i < 24 / 2; ++i) {
			wr ^= g(key, k, wl) ^ k;
			k += kstep;
			wl ^= g(key, k, wr) ^ k;
			k += kstep;
		}

		buf[0] = (wr >> 8);
		buf[1] = (wr & 0xFF);
		buf[2] = (wl >> 8);
		buf[3] = (wl & 0xFF);
	}

	private static int g(int[] key, int k, int w) {
		int g1, g2, g3, g4, g5, g6;

		g1 = ((w >> 8) & 0xff);
		g2 = (w & 0xff);

		g3 = (F[g2 ^ key[(4 * k) % 10]] ^ g1);
		g4 = (F[g3 ^ key[(4 * k + 1) % 10]] ^ g2);
		g5 = (F[g4 ^ key[(4 * k + 2) % 10]] ^ g3);
		g6 = (F[g5 ^ key[(4 * k + 3) % 10]] ^ g4);

		return ((g5 << 8) + g6);
	}

	private static final int[] F = new int[] { 0xa3, 0xd7, 0x09, 0x83, 0xf8,
			0x48, 0xf6, 0xf4, 0xb3, 0x21, 0x15, 0x78, 0x99, 0xb1, 0xaf, 0xf9,
			0xe7, 0x2d, 0x4d, 0x8a, 0xce, 0x4c, 0xca, 0x2e, 0x52, 0x95, 0xd9,
			0x1e, 0x4e, 0x38, 0x44, 0x28, 0x0a, 0xdf, 0x02, 0xa0, 0x17, 0xf1,
			0x60, 0x68, 0x12, 0xb7, 0x7a, 0xc3, 0xe9, 0xfa, 0x3d, 0x53, 0x96,
			0x84, 0x6b, 0xba, 0xf2, 0x63, 0x9a, 0x19, 0x7c, 0xae, 0xe5, 0xf5,
			0xf7, 0x16, 0x6a, 0xa2, 0x39, 0xb6, 0x7b, 0x0f, 0xc1, 0x93, 0x81,
			0x1b, 0xee, 0xb4, 0x1a, 0xea, 0xd0, 0x91, 0x2f, 0xb8, 0x55, 0xb9,
			0xda, 0x85, 0x3f, 0x41, 0xbf, 0xe0, 0x5a, 0x58, 0x80, 0x5f, 0x66,
			0x0b, 0xd8, 0x90, 0x35, 0xd5, 0xc0, 0xa7, 0x33, 0x06, 0x65, 0x69,
			0x45, 0x00, 0x94, 0x56, 0x6d, 0x98, 0x9b, 0x76, 0x97, 0xfc, 0xb2,
			0xc2, 0xb0, 0xfe, 0xdb, 0x20, 0xe1, 0xeb, 0xd6, 0xe4, 0xdd, 0x47,
			0x4a, 0x1d, 0x42, 0xed, 0x9e, 0x6e, 0x49, 0x3c, 0xcd, 0x43, 0x27,
			0xd2, 0x07, 0xd4, 0xde, 0xc7, 0x67, 0x18, 0x89, 0xcb, 0x30, 0x1f,
			0x8d, 0xc6, 0x8f, 0xaa, 0xc8, 0x74, 0xdc, 0xc9, 0x5d, 0x5c, 0x31,
			0xa4, 0x70, 0x88, 0x61, 0x2c, 0x9f, 0x0d, 0x2b, 0x87, 0x50, 0x82,
			0x54, 0x64, 0x26, 0x7d, 0x03, 0x40, 0x34, 0x4b, 0x1c, 0x73, 0xd1,
			0xc4, 0xfd, 0x3b, 0xcc, 0xfb, 0x7f, 0xab, 0xe6, 0x3e, 0x5b, 0xa5,
			0xad, 0x04, 0x23, 0x9c, 0x14, 0x51, 0x22, 0xf0, 0x29, 0x79, 0x71,
			0x7e, 0xff, 0x8c, 0x0e, 0xe2, 0x0c, 0xef, 0xbc, 0x72, 0x75, 0x6f,
			0x37, 0xa1, 0xec, 0xd3, 0x8e, 0x62, 0x8b, 0x86, 0x10, 0xe8, 0x08,
			0x77, 0x11, 0xbe, 0x92, 0x4f, 0x24, 0xc5, 0x32, 0x36, 0x9d, 0xcf,
			0xf3, 0xa6, 0xbb, 0xac, 0x5e, 0x6c, 0xa9, 0x13, 0x57, 0x25, 0xb5,
			0xe3, 0xbd, 0xa8, 0x3a, 0x01, 0x05, 0x59, 0x2a, 0x46 };
}

运行结果:

1ev336c
4294967295

使用注意:以上算法只对无符号32位数字有效。超过32位,可以参考https://github.com/dstar4138/jskipjack/blob/master/src/cipher/SkipJack.java

skip-gram 是一种词向量表示方法,用于将单词转换为向量表示。在实际应用中,我们可以使用类似于 TensorFlow 和 PyTorch 这样的深度学习框架来训练 skip-gram 模型。 以下是使用 TensorFlow 进行 skip-gram 模型训练的示例代码: ```python import tensorflow as tf # 定义训练数据集 data = ["apple", "banana", "orange", "grape", "pear"] vocabulary = list(set("".join(data))) vocabulary_size = len(vocabulary) # 定义 skip-gram 模型 embedding_size = 32 num_sampled = 3 inputs = tf.placeholder(tf.int32, shape=[None]) labels = tf.placeholder(tf.int32, shape=[None, 1]) embeddings = tf.Variable(tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, inputs) nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / tf.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size)) # 定义优化器和训练操作 optimizer = tf.train.AdamOptimizer().minimize(loss) # 训练模型 num_epochs = 1000 batch_size = 5 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(num_epochs): for i in range(len(data)): batch_inputs = [vocabulary.index(c) for c in data[i]] batch_labels = [[vocabulary.index(c)]] * len(data[i]) _, loss_val = sess.run([optimizer, loss], feed_dict={inputs: batch_inputs, labels: batch_labels}) print("epoch %d, iteration %d, loss: %f" % (epoch, i, loss_val)) ``` 在这个示例中,我们首先定义了训练数据集和词汇表,然后使用 TensorFlow 定义了 skip-gram 模型,并使用交叉熵作为损失函数。接着,我们定义了 Adam 优化器来最小化损失,并使用训练数据对模型进行训练。在每个 epoch 和每个 iteration 中,我们会输出当前的损失值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值