Keras深度学习实战(25)——使用skip-gram和CBOW模型构建单词向量

本文介绍了如何使用Keras实现skip-gram和CBOW模型来构建单词向量。详细讲解了CBOW和skip-gram的基本原理,并通过航空公司情感数据集展示了构建单词向量的过程。同时,演示了使用预训练的单词向量进行向量算术,以提升模型准确性。
摘要由CSDN通过智能技术生成

0. 前言

《构建单词向量》一节中,我们已经学习了如何从零开始构建了一个用于计算单词向量的模型。在本节中,我们将继续学习如何使用 gensim 库构建 skip-gramCBOW 模型获取单词向量。

1. skip-gram 和 CBOW 模型

1.1 CBOW 模型基本原理

我们在本小节中使用连续单词袋 (Continuous Bag of Words, CBOW) 模型构建单词向量。以 “I love watching movie” 为例,CBOW 模型处理此语句的方式如下:

  • 使用一个尺寸为 1 的特定窗口
  • 通过指定窗口大小,也表示指定了在给定单词的右侧和左侧将考虑的单词数
  • 给定窗口大小 1,则输入和输出单词如下所示:
输入单词 输出单词
好的,以下是使用Keras构建情感分析模型的代码示例: 首先,需要导入需要的库: ```python import pandas as pd import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense ``` 接着,读取数据集并进行预处理: ```python # 读取数据集 data = pd.read_csv('sentiment_analysis.csv') # 将文本转换为小写 texts = data['text'].apply(lambda x: x.lower()) # 将标签转换为数字:0表示负面情感,1表示正面情感 labels = np.array([0 if label == 'negative' else 1 for label in data['label']]) ``` 然后,进行词向量化: ```python # 将文本转换为词序列 tokenizer = Tokenizer(num_words=5000) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) # 对词序列进行填充,使其长度相同 padded_sequences = pad_sequences(sequences, maxlen=100) ``` 接下来,构建模型: ```python model = Sequential() # 添加嵌入层 model.add(Embedding(input_dim=5000, output_dim=100, input_length=100)) # 添加1D卷积层 model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu')) # 添加全局最大池化层 model.add(GlobalMaxPooling1D()) # 添加全连接层 model.add(Dense(units=64, activation='relu')) # 添加输出层 model.add(Dense(units=1, activation='sigmoid')) # 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ``` 最后,训练模型并进行评估: ```python # 划分训练集和测试集 indices = np.arange(padded_sequences.shape[0]) np.random.shuffle(indices) padded_sequences = padded_sequences[indices] labels = labels[indices] train_size = int(0.8 * padded_sequences.shape[0]) train_X, test_X = padded_sequences[:train_size], padded_sequences[train_size:] train_y, test_y = labels[:train_size], labels[train_size:] # 训练模型 model.fit(train_X, train_y, epochs=10, batch_size=64) # 评估模型 loss, accuracy = model.evaluate(test_X, test_y) print('Test accuracy:', accuracy) ``` 完整的代码示例如下: ```python import pandas as pd import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense # 读取数据集 data = pd.read_csv('sentiment_analysis.csv') # 将文本转换为小写 texts = data['text'].apply(lambda x: x.lower()) # 将标签转换为数字:0表示负面情感,1表示正面情感 labels = np.array([0 if label == 'negative' else 1 for label in data['label']]) # 将文本转换为词序列 tokenizer = Tokenizer(num_words=5000) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) # 对词序列进行填充,使其长度相同 padded_sequences = pad_sequences(sequences, maxlen=100) # 构建模型 model = Sequential() # 添加嵌入层 model.add(Embedding(input_dim=5000, output_dim=100, input_length=100)) # 添加1D卷积层 model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu')) # 添加全局最大池化层 model.add(GlobalMaxPooling1D()) # 添加全连接层 model.add(Dense(units=64, activation='relu')) # 添加输出层 model.add(Dense(units=1, activation='sigmoid')) # 编译模型 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 划分训练集和测试集 indices = np.arange(padded_sequences.shape[0]) np.random.shuffle(indices) padded_sequences = padded_sequences[indices] labels = labels[indices] train_size = int(0.8 * padded_sequences.shape[0]) train_X, test_X = padded_sequences[:train_size], padded_sequences[train_size:] train_y, test_y = labels[:train_size], labels[train_size:] # 训练模型 model.fit(train_X, train_y, epochs=10, batch_size=64) # 评估模型 loss, accuracy = model.evaluate(test_X, test_y) print('Test accuracy:', accuracy) ```
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值