Keras深度学习实战(25)——使用skip-gram和CBOW模型构建单词向量

本文介绍了如何使用Keras实现skip-gram和CBOW模型来构建单词向量。详细讲解了CBOW和skip-gram的基本原理,并通过航空公司情感数据集展示了构建单词向量的过程。同时,演示了使用预训练的单词向量进行向量算术,以提升模型准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

《构建单词向量》一节中,我们已经学习了如何从零开始构建了一个用于计算单词向量的模型。在本节中,我们将继续学习如何使用 gensim 库构建 skip-gramCBOW 模型获取单词向量。

1. skip-gram 和 CBOW 模型

1.1 CBOW 模型基本原理

我们在本小节中使用连续单词袋 (Continuous Bag of Words, CBOW) 模型构建单词向量。以 “I love watching movie” 为例,CBOW 模型处理此语句的方式如下:

  • 使用一个尺寸为 1 的特定窗口
  • 通过指定窗口大小,也表示指定了在给定单词的右侧和左侧将考虑的单词数
  • 给定窗口大小 1,则输入和输出单词如下所示:
输入单词 输出单词
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值