48-旋转图像

题目

给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

示例 1:

输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]

示例 2:

输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

示例 3:

输入:matrix = [[1]]
输出:[[1]]

示例 4:

输入:matrix = [[1,2],[3,4]]
输出:[[3,1],[4,2]]

解法一 先上下交换,后对角线交换

class Solution {
    public void rotate(int[][] matrix) {
        int len=matrix.length;
        //先上下翻转
        for(int i=0;i<len/2;i++){
            int[] temp=matrix[i];
            matrix[i]=matrix[len-1-i];
            matrix[len-i-1]=temp;
        }
        //后对角线翻转
        for(int i=0;i<len;i++){
            //对角线上的元素不用翻转
            for(int j=i+1;j<len;j++){
                int temp=matrix[i][j];
                matrix[i][j]=matrix[j][i];
                matrix[j][i]=temp;
            }
        }
        return;
    }
}

解法二 一圈一圈旋转

class Solution {
    public void rotate(int[][] matrix) {
        int len=matrix.length;
        for(int i=0;i<len/2;i++){
            for(int j=i;j<len-1-i;j++){
                int m=len-1-j;
                int n=len-1-i;
                int temp=matrix[i][j];
                matrix[i][j]=matrix[m][i];
                matrix[m][i]=matrix[n][m];
                matrix[n][m]=matrix[j][n];
                matrix[j][n]=temp;
            }
        }
        return;
    }
}

笔记:

  1. 旋转坐标的选择,可以画两个嵌套的正方形,定义好i,j根据图形推理出其他的坐标。
  2. i为何<len/2?将所有图像简化成A,B,C,D构成的正方形,就会发现每次只需要交换一半就行了。
  3. j为何从小于len-i-1?画图可知,j是由i决定的,只能在i的基础上后移。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codrab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值