题目
给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
示例 3:
输入:matrix = [[1]]
输出:[[1]]
示例 4:
输入:matrix = [[1,2],[3,4]]
输出:[[3,1],[4,2]]
解法一 先上下交换,后对角线交换
class Solution {
public void rotate(int[][] matrix) {
int len=matrix.length;
//先上下翻转
for(int i=0;i<len/2;i++){
int[] temp=matrix[i];
matrix[i]=matrix[len-1-i];
matrix[len-i-1]=temp;
}
//后对角线翻转
for(int i=0;i<len;i++){
//对角线上的元素不用翻转
for(int j=i+1;j<len;j++){
int temp=matrix[i][j];
matrix[i][j]=matrix[j][i];
matrix[j][i]=temp;
}
}
return;
}
}
解法二 一圈一圈旋转
class Solution {
public void rotate(int[][] matrix) {
int len=matrix.length;
for(int i=0;i<len/2;i++){
for(int j=i;j<len-1-i;j++){
int m=len-1-j;
int n=len-1-i;
int temp=matrix[i][j];
matrix[i][j]=matrix[m][i];
matrix[m][i]=matrix[n][m];
matrix[n][m]=matrix[j][n];
matrix[j][n]=temp;
}
}
return;
}
}
笔记:
- 旋转坐标的选择,可以画两个嵌套的正方形,定义好i,j根据图形推理出其他的坐标。
- i为何<len/2?将所有图像简化成A,B,C,D构成的正方形,就会发现每次只需要交换一半就行了。
- j为何从小于len-i-1?画图可知,j是由i决定的,只能在i的基础上后移。