KNN算法解决鸢尾花分类案例
本文分别通过KNN底层算法实现和sklearn中的KNeighbors Classifier(K近邻分类模拟)和对3中不同的鸢尾花的分类。
一、K近邻(KNN)算法介绍
二、KNN举例说明
三、KNN举例计算
四、KNN算法实现
五、利用KNN算法实现鸢尾花分类案例
案例背景说明:数据为sklearn自带的,数据集共有150条,其中数据
data代表着鸢尾花的4个特征(花萼长度,花萼宽度,花瓣长度,花瓣宽度)。target表示鸢尾花的三种不同类型(setosa,versicolor,virginica)
通过KNN算法,将数据集按比例随机生成分成70%的训练集和30%测试集。
最后通过对比预测的结果与实际结果,并计算出预测准确率。
方案一:通过KNN底层算法实现
1.导入必要库
# 导入库
import numpy as np
import pandas as pd
# 导入sklearn的数据集
from sklearn.datasets import load_iris
# 切分数据集和训练集
from sklearn.model_selection import train_test_split
# 计算分类预测准确率
from sklearn.metrics import accuracy_score
2.查看鸢尾花的数据
iris = load_iris()
# 查看x的前5行数据
print(iris.data[:5])
# 查看结果y的前5行数据
print(iris.target)
3.对数据进行预处理
x = iris.data
y = iris.target.reshape(-1,1)
print(x.shape,y.shape)
4.将测试集与训练集分离
# 换分训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=35,stratify = y)
print(x_train.shape,y_train.shape)
print(x_test.shape,y_test.shape)
5.核心算法实现
# 距离函数定义
# 曼哈顿距离
def l1_distance(a,b):
return np.sum(np.abs(a-b),axis=1)
def l2_distance(a,b):
return np.sqrt(np.sum((a-b)**2,axis=1))
# 分类器实现
class kNN(object):
# 定义初始化方法,初始化kNN需要的超参数
def __init__(self,n_neighbors = 1,dist_func = l1_distance):
self.n_neighbors = n_neighbors
self.dist_func = dist_func
# 训练模型方法
def fit(self,x,y):
# 将x,y传进来即可
self.x_train = x
self.y_train = y
# 模型预测方法
def predict(self,x):
# 初始化预测分类数组
y_pred = np.zeros((x.shape[0],1),dtype = self.y_train.dtype)
# 遍历输入的x数据点
for i,x_test in enumerate(x):
# x_test跟所有的训练数据计算距离
distances = self.dist_func(self.x_train,x_test)
# 得到的距离按照由近到远排序
nn_index = np.argsort(distances)
# 选取最近的k个点,保存其类别
nn_y = self.y_train[nn_index[:self.n_neighbors]].ravel()
# 统计类别中频率最高的那个,赋给y_pred[i]
y_pred[i] = np.argmax(np.bincount(nn_y))
return y_pred
6.测试数据
# 定义一个knn实例
knn = kNN(n_neighbors = 3)
# 训练模型
knn.fit(x_train,y_train)
# 传入测试数据,做预测
y_pred = knn.predict(x_test)
print(y_test.ravel())
print(y_pred.ravel())
# 求准确率
accuracy = accuracy_score(y_test,y_pred)
print('预测准确率:',accuracy)
7.通过改变不同的k值和距离函数类型,得到更好的方案
# 定义一个knn实例
knn = kNN()
# 训练模型
knn.fit(x_train,y_train)
# 创建一个列表保存不同的准确率
result_list = []
for p in [1,2]:
knn.dist_func = l1_distance if p == 1 else l2_distance
# 考虑不同的k值
for k in range(1,10,2):
knn.n_neighbors = k
# 传入测试数据,做预测
y_pred = knn.predict(x_test)
# 求出预测准确率
accuracy = accuracy_score(y_test,y_pred)
result_list.append([k,'l1_distance' if p ==1 else 'l2_distance',accuracy])
df = pd.DataFrame(result_list,columns = ['k','距离函数','预测准确率'])
df
方案二:通过sklearn中的KNeighbors Classifier实现
1.导入必要库
from __future__ import print_function
# 导入数据集
from sklearn import datasets
from sklearn.model_selection import train_test_split
# 导入K近邻算法库
from sklearn.neighbors import KNeighborsClassifier
2.导入数据
iris = datasets.load_iris()
iris_X = iris.data
iris_y = iris.target
3.查看数据
# 查看data数的前5行
print(iris_X[:5])
# 查看分类结果
print(iris_y)
# 查看data和target的数据结构
print(iris_X.shape)
print(iris_y.shape)
2.分离数据(70%训练集和30%测试集)
# 将数据分成训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(
iris_X, iris_y, test_size=0.3) # 将数据集分开,测试集的数据量设置为30%,训练集为70%
3.创建KNN回归模型进行预测
# 分类
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
# 预测结果
print(knn.predict(X_test))
# 实际结果
print(y_test)
4.计算预测准确率
# 计算分类预测准确率
from sklearn.metrics import accuracy_score
# 求准确率
accuracy = accuracy_score(y_test,knn.predict(X_test))
print('预测准确率:',accuracy)