3、基于卷积神经网络和长短时记忆网络的图像字幕生成系统

基于卷积神经网络和长短时记忆网络的图像字幕生成系统

1. 引言

人类具备轻松判断周围环境和情况的能力,而让计算机自动理解周围环境,可以通过用图像对其进行训练,并确保它能描述图像内容来实现。图像字幕生成是为图像创建合适字幕的过程,这些字幕在语言上合适、语义上精确,与人类的理解一致。它在场景识别系统、人机通信系统、信息检索系统和视障人士辅助系统等领域有着广泛应用。

1.1 图像字幕

图像字幕的工作方法比图像分类要困难得多。图像分类只涉及识别图像中的对象,而图像字幕必须捕捉图像中对象之间的关系。识别图像的上下文并以字幕的形式进行描述是极具挑战性的任务,它需要对图像内容有高度的理解,并以人类语言表达信息。

1.2 迁移学习

迁移学习是机器学习中的一个研究问题,主要关注存储解决问题过程中获得的知识,并将其应用于不同的问题。例如,学习查找和识别对象所获得的知识,可以应用于识别新图像中对象之间的关系。在本项目中,使用 InceptionResnetV2 这一先进的卷积神经网络(CNN)模型进行迁移学习,以获取和存储所有数据集图像的特征向量。

InceptionResNetV2 是在 ImageNet 数据库上训练的先进 CNN 架构模型,该数据库包含超过数十万张不同类别的图像。它有 164 层深度网络,能够将对象/图像分类为 1000 个类别,如女性、笔、狮子、狗、山丘等。该网络接受 299×299 大小的图像,输出是一个包含所有类别概率的列表,为每张图像提供一个 1536 大小的特征向量。它结合了 Inception 网络和残差网络连接的架构,通过残差连接避免了深度结构导致的退化问题,同时减少了训练时间。其网络架构如下: <

【顶刊TAC复现】事件触发模型参考自适应控制(ETC+MRAC):针对非线性参数不确定性线性部分时变连续系统研究(Matlab代码实现)内容概要:本文档介绍了“事件触发模型参考自适应控制(ETC+MRAC)”的研究与Matlab代码实现,聚焦于存在非线性参数不确定性且具有时变线性部分的连续系统。该研究复现了顶刊IEEE Transactions on Automatic Control(TAC)的相关成果,重点在于通过事件触发机制减少控制器更新频率,提升系统资源利用效率,同时结合模型参考自适应控制策略增强系统对参数不确定性外部扰动的鲁棒性。文档还展示了大量相关科研方向的技术服务内容,涵盖智能优化算法、机器学习、路径规划、电力系统、信号处理等多个领域,并提供了Matlab仿真辅导服务及相关资源下载链接。; 适合人群:具备自动控制理论基础、非线性系统分析背景以及Matlab编程能力的研究生、博士生及科研人员,尤其适合从事控制理论与工程应用研究的专业人士。; 使用场景及目标:① 复现顶刊TAC关于ETC+MRAC的先进控制方法,用于非线性时变系统的稳定性与性能优化研究;② 学习事件触发机制在节约通信与计算资源方面的优势;③ 掌握模型参考自适应控制的设计思路及其在不确定系统中的应用;④ 借助提供的丰富案例与代码资源开展科研项目、论文撰写或算法验证。; 阅读建议:建议读者结合控制理论基础知识,重点理解事件触发条件的设计原理与自适应律的构建过程,运行并调试所提供的Matlab代码以加深对算法实现细节的理解,同时可参考文中列举的其他研究方向拓展应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值