基于卷积神经网络和长短时记忆网络的图像字幕生成系统
1. 引言
人类具备轻松判断周围环境和情况的能力,而让计算机自动理解周围环境,可以通过用图像对其进行训练,并确保它能描述图像内容来实现。图像字幕生成是为图像创建合适字幕的过程,这些字幕在语言上合适、语义上精确,与人类的理解一致。它在场景识别系统、人机通信系统、信息检索系统和视障人士辅助系统等领域有着广泛应用。
1.1 图像字幕
图像字幕的工作方法比图像分类要困难得多。图像分类只涉及识别图像中的对象,而图像字幕必须捕捉图像中对象之间的关系。识别图像的上下文并以字幕的形式进行描述是极具挑战性的任务,它需要对图像内容有高度的理解,并以人类语言表达信息。
1.2 迁移学习
迁移学习是机器学习中的一个研究问题,主要关注存储解决问题过程中获得的知识,并将其应用于不同的问题。例如,学习查找和识别对象所获得的知识,可以应用于识别新图像中对象之间的关系。在本项目中,使用 InceptionResnetV2 这一先进的卷积神经网络(CNN)模型进行迁移学习,以获取和存储所有数据集图像的特征向量。
InceptionResNetV2 是在 ImageNet 数据库上训练的先进 CNN 架构模型,该数据库包含超过数十万张不同类别的图像。它有 164 层深度网络,能够将对象/图像分类为 1000 个类别,如女性、笔、狮子、狗、山丘等。该网络接受 299×299 大小的图像,输出是一个包含所有类别概率的列表,为每张图像提供一个 1536 大小的特征向量。它结合了 Inception 网络和残差网络连接的架构,通过残差连接避免了深度结构导致的退化问题,同时减少了训练时间。其网络架构如下: <
超级会员免费看
订阅专栏 解锁全文
8074

被折叠的 条评论
为什么被折叠?



