循环神经网络、长短期记忆网络、生成对抗网络与优化方法解析
1. BLSTM的独特优势
BLSTM(双向长短期记忆网络)在处理特定句子时展现出强大的能力。例如,对于 “No sentence begins with because, because because is a conjunction.” 这样的句子,BLSTM 能够正确识别其含义,因为它可以双向处理句子。而其他模型在识别这类句子的正确含义时则存在困难。不过,由于它涉及双向处理序列数据,计算需求几乎是传统 LSTM 的两倍,所以只有在真正需要其功能时才应使用。
2. 生成对抗网络(GANs)概述
GANs 是人工智能领域的一个里程碑,它能够生成逼真的图像,转换真实或人造图片的现有风格,还能使用 “This person does not exist” 随机人脸生成框架生成人脸。此外,它还能根据文本描述生成图像,证明了其高效性。
2.1 生成器和判别器模型
GAN 由两个阶段的神经网络组成:生成器和判别器。
- 生成器:用于合成新数据。
- 判别器:用于区分真实数据和虚假数据。
这两个阶段通过基于对抗的训练并行进行。生成器接收噪声输入并生成与真实数据非常相似的数据,判别器接收真实数据和生成器合成的数据,并给出输入数据为真实数据的概率。两者相互竞争,生成器试图让判别器相信其生成的是真实数据,判别器则努力识别出虚假数据。在训练阶段通常涉及两种损失:生成器损失和判别器损失。生成器损失反映了虚假数据在与真实数据竞争时的弱点,判别器损失则反映了它将虚假数据误判为真实数据的程度。这两种损失通过反向传播分别传递给生成器和判别器,以改进其过程并减少相
超级会员免费看
订阅专栏 解锁全文
9万+

被折叠的 条评论
为什么被折叠?



