51nod 1190 最小公倍数之和V2

本文探讨了在给定范围内求解最小公倍数(LCM)之和的问题,并提出了一种利用反演思想的高效算法。该算法通过复杂的数学推导简化了计算过程,能够有效地处理大规模数据输入。

题目大意:

给出2个数a, b,求LCM(a,b) + LCM(a+1,b) + .. + LCM(b,b)。
1<=a<=b<=10^9
T组数据,1<=T<=50000
且数据为随机,没有构造的卡人数据。

题解:

这一题我是不会的,去网上看了下题解,发现了一个奇怪的反演姿势。

必要结论:
d|nμ(d)=(n=1)
证明略。

Ans=bi=alcm(i)
=bd|badi=bdi(gcd(i,bd)=1)
=bd|badi=bdid|gcd(i,bd)μ(d)
=bd|bd|bdμ(d)dadi=bdi(d|gcd(i,bd))
=bd|bd|bdμ(d)daddi=bddi
=bd|bd|bdμ(d)d(bddadd+1)(bdd+add)/2
设T = d * d’
=bT|b(bTaT+1)(bT+aT)/2d|Tμ(d)d
我们观察一下d|Tμ(d)d
狄利克雷卷积做了这么多,轻松可得:
T=pqii,那么
d|Tμ(d)d=1pi
在递归枚举约数的时候维护一下即可。
Code:

#include<stdio.h>
#define ll long long
#define fo(i, x, y) for(int i = x; i <= y; i ++)
using namespace std;

const ll mo = 1e9 + 7, ni_2 = 5e8 + 4;
const int Maxn = 32000;

bool bz[Maxn + 1];
int T, a, b, z, i, u[35], v[35], p[3500];
ll ans;

void dg(int x, int d, ll s) {
    if(x > u[0]) {
        ll t1 = b / d, t2 = (a + d - 1) / d ;
        ans += (t1 + t2) * (t1 - t2 + 1) * s;
        return;
    }
    dg(x + 1, d, s); 
    s = s * (1 - u[x]);
    fo(i, 1, v[x]) d *= u[x], dg(x + 1, d, s);
}

int main() {
    for(i = 2; i <= Maxn; i ++) {
        if(!bz[i]) p[++ p[0]] = i;
        fo(j, 1, p[0]) {
            int k = i * p[j]; if(k > Maxn) break;
            bz[k] = 1; if(i % p[j] == 0) break;
        }
    }
    for(scanf("%d", &T); T; T --) {
        scanf("%d %d", &a, &b);
        z = b; u[0] = 0;
        for(i = 1; p[i] * p[i] <= z; i ++) {
            if(z % p[i]) continue;
            u[++ u[0]] = p[i]; v[u[0]] = 0;
            while(z % p[i] == 0) v[u[0]] ++, z /= p[i];
        }
        if(z > 1) u[++ u[0]] = z, v[u[0]] = 1;
        ans = 0;
        dg(1, 1, 1);
        printf("%lld\n", (ans % mo + mo) % mo * ni_2 % mo * b % mo);
    }
}
目前没有关于51nod 3478题目的具体描述官方公布的C++解决方案代码。以下是一种通用的解题思路以及一个示例C++代码模板,可以用于解决类似的问题。 ### 问题解题思路 51nod 3478通常可能涉及以下算法或技术: - 动态规划(DP)或状态转移方程 - 贪心算法 - 数据结构(如线段树、堆、优先队列等) - 图论算法(如最短路径、最小生成树等) ### 示例C++代码模板 以下是一个通用的C++代码框架,适用于需要读取输入并处理大规模数据的问题: ```cpp #include <bits/stdc++.h> using namespace std; typedef long long ll; const int MAXN = 100005; // 根据题目规模调整 int n; ll k; ll a[MAXN]; int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 1; i <= n; ++i) { cin >> a[i]; a[i] += a[i - 1]; // 前缀 } // 示例逻辑:查找是否存在为k的连续子数组 unordered_map<ll, int> prefix_map; prefix_map[0] = 0; for (int i = 1; i <= n; ++i) { if (prefix_map.find(a[i] - k) != prefix_map.end()) { cout << prefix_map[a[i] - k] + 1 << " " << i << endl; return 0; } prefix_map[a[i]] = i; } cout << "No Solution" << endl; return 0; } ``` ### 说明 - 上述代码使用了前缀哈希表(`unordered_map`)来高效查找是否存在为`k`的连续子数组。 - 时间复杂度为O(n),适用于大规模输入。 - 如果题目有其他特定要求,可以根据具体条件修改代码逻辑。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值