PDE选填02

最大值的取值点

满足 − u x x − u y y = − 1 -u_{xx}-u_{yy}=-1 uxxuyy=1 的函数在单位圆上的最大值在何处取得?

给定偏微分方程 − u x x − u y y = − 1 -u_{xx}-u_{yy}=-1 uxxuyy=1,我们可以考虑使用泊松方程的性质来解决这个问题。泊松方程的形式为 − Δ u = f -\Delta u = f Δu=f,其中 Δ \Delta Δ 是拉普拉斯算子,对于二维情况即为 u x x + u y y u_{xx} + u_{yy} uxx+uyy。因此,我们的方程可以重写为 Δ u = 1 \Delta u = 1 Δu=1

根据泊松方程的最大值原理(maximum principle),如果 Δ u ≥ 0 \Delta u \geq 0 Δu0 在一个区域 Ω \Omega Ω 内部,那么 u u u 的最大值一定在 Ω \Omega Ω 的边界上取得。在我们的情况中, Δ u = 1 > 0 \Delta u = 1 > 0 Δu=1>0,所以 u u u 的最大值一定在单位圆的边界上取得。

具体在哪个点取得最大值,则取决于边界条件。如果没有给出具体的边界条件,我们无法确定最大值在哪里取得。如果有给出边界条件,我们可以通过求解泊松方程来找到 u u u 的解,进而确定最大值的位置。

单位圆的边界方程是 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1。这个方程表示所有满足 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 的点 ( x , y ) (x, y) (x,y) 的集合,这些点构成了平面上的一个圆,圆心在原点 ( 0 , 0 ) (0, 0) (0,0),半径为 1 1 1

延拓法求解半无界问题

请将这个半无界问题化为齐次边界并用延拓法求解
{ u t t − u x x = 0 , x > 0 ,   t > 0 , u ( x , 0 ) = sin ⁡ ( x ) , x > 0 , u t ( x , 0 ) = cos ⁡ ( x ) , x > 0 , u x ( 0 , t ) = 1 , t ≥ 0. \begin{cases} u_{tt} - u_{xx} = 0, & x > 0, \, t > 0, \\ u(x, 0) = \sin(x), & x > 0, \\ u_t(x, 0) = \cos(x), & x > 0, \\ u_x(0, t) = 1, & t \geq 0. \end{cases} uttuxx=0,u(x,0)=sin(x),ut(x,0)=cos(x),ux(0,t)=1,x>0,t>0,x>0,x>0,t0.

这个半无界波动方程问题可以通过延拓和D’Alembert公式来求解。我们首先需要对初始条件和边界条件进行延拓,然后使用D’Alembert公式求解全无界问题,最后取解的 x > 0 x > 0 x>0 部分作为原始问题的解。

  1. 延拓初始条件

    • 对初始位移 u ( x , 0 ) = sin ⁡ ( x ) u(x, 0) = \sin(x) u(x,0)=sin(x) 进行偶延拓:对于 x < 0 x < 0 x<0,定义 sin ⁡ ( − x ) = − sin ⁡ ( x ) \sin(-x) = -\sin(x) sin(x)=sin(x)
    • 对初始速度 u t ( x , 0 ) = cos ⁡ ( x ) u_t(x, 0) = \cos(x) ut(x,0)=cos(x) 进行偶延拓:对于 x < 0 x < 0 x<0,定义 cos ⁡ ( − x ) = cos ⁡ ( x ) \cos(-x) = \cos(x) cos(x)=cos(x)

    因此,延拓后的初始条件为:

    { u ( x , 0 ) = sin ⁡ ( ∣ x ∣ ) , x ∈ R , u t ( x , 0 ) = cos ⁡ ( x ) , x ∈ R . \begin{cases} u(x, 0) = \sin(|x|), & x \in \mathbb{R}, \\ u_t(x, 0) = \cos(x), & x \in \mathbb{R}. \end{cases} {u(x,0)=sin(x),ut(x,0)=cos(x),xR,xR.

  2. 处理边界条件:对于边界条件 u x ( 0 , t ) = 1 u_x(0, t) = 1 ux(0,t)=1,我们无需进行延拓,因为这是一个Neumann边界条件,它自然地满足了偶延拓后的解的性质。

  3. 应用D’Alembert公式:对于全无界问题,D’Alembert公式给出了解的表达式:

    u ( x , t ) = 1 2 [ u ( x + t , 0 ) + u ( x − t , 0 ) ] + 1 2 ∫ x − t x + t u t ( ξ , 0 )   d ξ . u(x, t) = \frac{1}{2}[u(x + t, 0) + u(x - t, 0)] + \frac{1}{2} \int_{x-t}^{x+t} u_t(\xi, 0) \, d\xi. u(x,t)=21[u(x+t,0)+u(xt,0)]+21xtx+tut(ξ,0)dξ.

    将延拓后的初始条件代入,得到:

    u ( x , t ) = 1 2 [ sin ⁡ ( ∣ x + t ∣ ) + sin ⁡ ( ∣ x − t ∣ ) ] + 1 2 ∫ x − t x + t cos ⁡ ( ξ )   d ξ . u(x, t) = \frac{1}{2}[\sin(|x + t|) + \sin(|x - t|)] + \frac{1}{2} \int_{x-t}^{x+t} \cos(\xi) \, d\xi. u(x,t)=21[sin(x+t)+sin(xt)]+21xtx+tcos(ξ)dξ.

    计算积分,得到:

    u ( x , t ) = 1 2 [ sin ⁡ ( ∣ x + t ∣ ) + sin ⁡ ( ∣ x − t ∣ ) ] + 1 2 [ sin ⁡ ( x + t ) − sin ⁡ ( x − t ) ] . u(x, t) = \frac{1}{2}[\sin(|x + t|) + \sin(|x - t|)] + \frac{1}{2}[\sin(x + t) - \sin(x - t)]. u(x,t)=21[sin(x+t)+sin(xt)]+21[sin(x+t)sin(xt)].

  4. 取解的 x > 0 x > 0 x>0 部分:由于原始问题是在半无界区间 x > 0 x > 0 x>0 上定义的,我们只需取解的 x > 0 x > 0 x>0 部分作为最终解。因此,对于 x > 0 x > 0 x>0 t ≥ 0 t \geq 0 t0,解为:

    u ( x , t ) = 1 2 [ sin ⁡ ( x + t ) + sin ⁡ ( x − t ) ] + 1 2 [ sin ⁡ ( x + t ) − sin ⁡ ( x − t ) ] = sin ⁡ ( x + t ) . u(x, t) = \frac{1}{2}[\sin(x + t) + \sin(x - t)] + \frac{1}{2}[\sin(x + t) - \sin(x - t)] = \sin(x + t). u(x,t)=21[sin(x+t)+sin(xt)]+21[sin(x+t)sin(xt)]=sin(x+t).

最终,对于原始半无界波动方程问题,解为 u ( x , t ) = sin ⁡ ( x + t ) u(x, t) = \sin(x + t) u(x,t)=sin(x+t),其中 x > 0 x > 0 x>0 t ≥ 0 t \geq 0 t0

要将这个半无界问题化为齐次边界并用奇延拓法求解,我们可以首先对原始问题进行延拓,使其变成定义在全空间上的问题。具体来说,我们可以对函数 u ( x , t ) u(x,t) u(x,t)进行奇延拓,即定义
v ( x , t ) = { u ( x , t ) , x ≥ 0 , − u ( − x , t ) , x < 0. v(x, t) = \begin{cases} u(x, t), & x \geq 0, \\ -u(-x, t), & x < 0. \end{cases} v(x,t)={u(x,t),u(x,t),x0,x<0.
这样, v ( x , t ) v(x,t) v(x,t)就是关于 x = 0 x=0 x=0的奇函数。我们现在需要将原始问题中的初始条件和边界条件也延拓到全空间上。由于 u ( x , t ) u(x,t) u(x,t) x = 0 x=0 x=0处的导数是已知的,我们可以使用这个信息来确定 v ( x , t ) v(x,t) v(x,t) x = 0 x=0 x=0附近的行为。具体来说,我们有
v x ( 0 + , t ) = u x ( 0 , t ) = 1 , v x ( 0 − , t ) = − u x ( 0 , t ) = − 1 , v_x(0^+, t) = u_x(0, t) = 1, \quad v_x(0^-, t) = -u_x(0, t) = -1, vx(0+,t)=ux(0,t)=1,vx(0,t)=ux(0,t)=1,
这意味着 v ( x , t ) v(x,t) v(x,t) x = 0 x=0 x=0处不可导。因此,我们不能直接将原始问题中的边界条件 u x ( 0 , t ) = 1 u_x(0,t)=1 ux(0,t)=1延拓到 v ( x , t ) v(x,t) v(x,t)上。然而,我们可以通过修改初始条件来间接地满足这个边界条件。具体来说,我们可以取
v t ( x , 0 ) = { cos ⁡ ( x ) , x > 0 , − cos ⁡ ( − x ) , x < 0 , v_t(x, 0) = \begin{cases} \cos(x), & x > 0, \\ -\cos(-x), & x < 0, \end{cases} vt(x,0)={cos(x),cos(x),x>0,x<0,
这样, v t ( x , 0 ) v_t(x, 0) vt(x,0) x = 0 x=0 x=0处的跳跃就会导致 v ( x , t ) v(x,t) v(x,t) x = 0 x=0 x=0处的导数随时间 t t t的增加而趋向于1。

综上所述,我们可以将原始问题转化为以下全空间问题:
{ v t t − v x x = 0 , x ∈ R ,   t > 0 , v ( x , 0 ) = sin ⁡ ∣ x ∣ , x ∈ R , v t ( x , 0 ) = { cos ⁡ ( x ) , x > 0 , − cos ⁡ ( − x ) , x < 0 , x ∈ R . \begin{cases} v_{tt} - v_{xx} = 0, & x \in \mathbb{R}, \, t > 0, \\ v(x, 0) = \sin|x|, & x \in \mathbb{R}, \\ v_t(x, 0) = \begin{cases} \cos(x), & x > 0, \\ -\cos(-x), & x < 0, \end{cases} & x \in \mathbb{R}. \end{cases} vttvxx=0,v(x,0)=sinx,vt(x,0)={cos(x),cos(x),x>0,x<0,xR,t>0,xR,xR.
现在,我们可以使用达朗贝尔公式求解这个全空间问题。由于 v ( x , t ) v(x,t) v(x,t)是关于 x x x的奇函数,我们只需要求解 x ≥ 0 x \geq 0 x0的情况,然后通过奇延拓得到 x < 0 x < 0 x<0的解。对于 x ≥ 0 x \geq 0 x0,我们有
v ( x , t ) = 1 2 [ sin ⁡ ( x + t ) + sin ⁡ ( x − t ) ] + 1 2 ∫ x − t x + t cos ⁡ ( ξ )   d ξ . v(x,t) = \frac{1}{2}[\sin(x+t) + \sin(x-t)] + \frac{1}{2}\int_{x-t}^{x+t} \cos(\xi) \, d\xi. v(x,t)=21[sin(x+t)+sin(xt)]+21xtx+tcos(ξ)dξ.
通过计算积分,我们得到
v ( x , t ) = 1 2 [ sin ⁡ ( x + t ) + sin ⁡ ( x − t ) ] + 1 2 [ sin ⁡ ( x + t ) − sin ⁡ ( x − t ) ] = sin ⁡ ( x + t ) . v(x,t) = \frac{1}{2}[\sin(x+t) + \sin(x-t)] + \frac{1}{2}[\sin(x+t) - \sin(x-t)] = \sin(x+t). v(x,t)=21[sin(x+t)+sin(xt)]+21[sin(x+t)sin(xt)]=sin(x+t).
因此,原始问题的解为
u ( x , t ) = v ( x , t ) = sin ⁡ ( x + t ) , x ≥ 0 ,   t ≥ 0. u(x,t) = v(x,t) = \sin(x+t), \quad x \geq 0, \, t \geq 0. u(x,t)=v(x,t)=sin(x+t),x0,t0.

如果 g ^ ( λ ) = 2 π 1 + λ 2 \hat{g}(\lambda)=\frac{\sqrt{\frac{2}{\pi}}}{1+\lambda^2} g^(λ)=1+λ2π2 ,那么请计算 g ( x ) ∗ g ( 2 x ) ^ ( λ ) \hat{g(x) * g(2x)}(\lambda) g(x)g(2x)^(λ)的结果,其中 ∗ * 是卷积算子。

\newline
\newline

已知 g ^ ( λ ) = 2 π 1 1 + λ 2 \hat{g}(\lambda)=\sqrt{\frac{2}{\pi}}\frac{1}{1+\lambda^2} g^(λ)=π2 1+λ21, 求 ( g ( x ) ∗ g ( 2 x ) )   ^   ( λ ) ({g(x) * g(2x)})\ \hat{}\ (\lambda) (g(x)g(2x)) ^ (λ),我的计算过程如下:

首先计算 g ( 2 x )   ^   ( λ ) g(2x)\ \hat{}\ (\lambda) g(2x) ^ (λ),根据伸缩性质 5. 5. 5. ( f ( k x ) )   ^   ( λ ) = 1 ∣ k ∣ f ^ ( λ k ) , k ≠ 0 (f(kx))\ \hat{} \ (\lambda)=\frac{1}{|k|}\hat{f}(\frac{\lambda}{k}),k\neq0 (f(kx)) ^ (λ)=k1f^(kλ),k=0,显然这里 k = 2 k=2 k=2,于是 g ( 2 x )   ^   ( λ ) = 1 ∣ 2 ∣ g ^ ( λ 2 ) = 1 2 2 π 1 + ( λ 2 ) 2 = 1 2 2 π 1 1 + λ 2 4 g(2x)\ \hat{}\ (\lambda)=\frac{1}{|2|}\hat{g}(\frac{\lambda}{2})=\frac{1}{2}\frac{\sqrt{\frac{2}{\pi}}}{1+(\frac{\lambda}{2})^2}=\frac{1}{2}\sqrt{\frac{2}{\pi}}\frac{1}{1+\frac{\lambda^2}{4}} g(2x) ^ (λ)=∣2∣1g^(2λ)=211+(2λ)2π2 =21π2 1+4λ21

然后根据卷积性质 7. 7. 7. ( f ∗ g )   ^   ( λ ) = 2 π f ^ g ^ (f * g)\ \hat{}\ (\lambda) =\sqrt{2\pi}\hat{f}\hat{g} (fg) ^ (λ)=2π f^g^ 得到 ( g ( x ) ∗ g ( 2 x ) )   ^   ( λ ) = 2 π g ^ ( λ ) ⋅ g ( 2 x )   ^   ( λ ) ({g(x) * g(2x)})\ \hat{}\ (\lambda)=\sqrt{2\pi}\hat{g}(\lambda)\cdot g(2x)\ \hat{}\ (\lambda)\newline (g(x)g(2x)) ^ (λ)=2π g^(λ)g(2x) ^ (λ)把已知的 g ^ ( λ ) = 2 π 1 1 + λ 2 \hat{g}(\lambda)=\sqrt{\frac{2}{\pi}}\frac{1}{1+\lambda^2} g^(λ)=π2 1+λ21 和计算出的 g ( 2 x )   ^   ( λ ) g(2x)\ \hat{}\ (\lambda) g(2x) ^ (λ) 带进去得 ( g ( x ) ∗ g ( 2 x ) )   ^   ( λ ) = 2 π ⋅ 2 π 1 1 + λ 2 ⋅ 1 2 2 π 1 1 + λ 2 4 ({g(x) * g(2x)})\ \hat{}\ (\lambda)=\sqrt{2\pi}\cdot \sqrt{\frac{2}{\pi}}\frac{1}{1+\lambda^2}\cdot \frac{1}{2}\sqrt{\frac{2}{\pi}}\frac{1}{1+\frac{\lambda^2}{4}} (g(x)g(2x)) ^ (λ)=2π π2 1+λ2121π2 1+4λ21 = 2 π ⋅ 1 2 ⋅ 2 π ⋅ 1 ( 1 + λ 2 ) ( 1 + λ 2 4 ) = 2 π 1 ( 1 + λ 2 ) ( 1 + λ 2 4 ) \quad\quad=\sqrt{2\pi}\cdot\frac{1}{2}\cdot \frac{2}{\pi}\cdot\frac{1}{(1+\lambda^2)(1+\frac{\lambda^2}{4})}=\sqrt{\frac{2}{\pi}}\frac{1}{(1+\lambda^2)(1+\frac{\lambda^2}{4})} =2π 21π2(1+λ2)(1+4λ2)1=π2 (1+λ2)(1+4λ2)1

为什么答案有出入,答案是 1 2 π 1 ( 1 + λ 2 ) ( 1 + λ 2 4 ) \sqrt{\frac{1}{2\pi}}\frac{1}{(1+\lambda^2)(1+\frac{\lambda^2}{4})} 2π1 (1+λ2)(1+4λ2)1

傅里叶变换

如果一维傅里叶变换的定义为 f ^ ( λ ) = 1 2 π ∫ − ∞ ∞ f ( x ) e − i λ x d x \hat{f}(\lambda)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{-i\lambda x}dx f^(λ)=2π 1f(x)exdx,且 g ( x ) = { 1 , ∣ x ∣ ≤ 1 , 0 , ∣ x ∣ > 1 , g(x)= \begin{cases} 1, & |x| \leq 1, \\ 0, & |x| > 1, \end{cases} g(x)={1,0,x1,x>1,那么 g ^ ( λ ) = ? \hat{g}(\lambda)=? g^(λ)=

要求函数 g ( x ) g(x) g(x) 的一维傅里叶变换,我们首先考虑 g ( x ) g(x) g(x) 的定义:

g ( x ) = { 1 if  ∣ x ∣ ≤ 1 , 0 if  ∣ x ∣ > 1 g(x) = \begin{cases} 1 & \text{if } |x| \leq 1, \\ 0 & \text{if } |x| > 1 \end{cases} g(x)={10if x1,if x>1

根据一维傅里叶变换的定义,我们有

g ^ ( λ ) = 1 2 π ∫ − ∞ ∞ g ( x ) e − i λ x   d x \hat{g}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) e^{-i\lambda x} \, dx g^(λ)=2π 1g(x)exdx

由于 g ( x ) = 0 g(x) = 0 g(x)=0 ∣ x ∣ > 1 |x| > 1 x>1,积分可以简化为只在区间 ([-1, 1]) 上进行:

g ^ ( λ ) = 1 2 π ∫ − 1 1 e − i λ x   d x \hat{g}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-i\lambda x} \, dx g^(λ)=2π 111exdx

这个积分可以直接计算:

∫ − 1 1 e − i λ x   d x = e − i λ x − i λ ∣ − 1 1 = e − i λ ⋅ 1 − e − i λ ⋅ ( − 1 ) − i λ = e − i λ − e i λ − i λ \int_{-1}^{1} e^{-i\lambda x} \, dx = \left. \frac{e^{-i\lambda x}}{-i\lambda} \right|_{-1}^{1} = \frac{e^{-i\lambda \cdot 1} - e^{-i\lambda \cdot (-1)}}{-i\lambda} = \frac{e^{-i\lambda} - e^{i\lambda}}{-i\lambda} 11exdx=ex 11=e1e(1)=ee

使用欧拉公式 e i θ = cos ⁡ ( θ ) + i sin ⁡ ( θ ) e^{i\theta} = \cos(\theta) + i\sin(\theta) eiθ=cos(θ)+isin(θ),我们有:

e − i λ − e i λ = − 2 i sin ⁡ ( λ ) e^{-i\lambda} - e^{i\lambda} = -2i \sin(\lambda) ee=2isin(λ)

所以积分变为:

∫ − 1 1 e − i λ x   d x = − 2 i sin ⁡ ( λ ) − i λ = 2 sin ⁡ ( λ ) λ \int_{-1}^{1} e^{-i\lambda x} \, dx = \frac{-2i \sin(\lambda)}{-i\lambda} = \frac{2 \sin(\lambda)}{\lambda} 11exdx=2isin(λ)=λ2sin(λ)

因此, g ^ ( λ ) \hat{g}(\lambda) g^(λ) 为:

g ^ ( λ ) = 1 2 π ⋅ 2 sin ⁡ ( λ ) λ = 2 π ⋅ sin ⁡ ( λ ) λ \hat{g}(\lambda) = \frac{1}{\sqrt{2\pi}} \cdot \frac{2 \sin(\lambda)}{\lambda} = \sqrt{\frac{2}{\pi}} \cdot \frac{\sin(\lambda)}{\lambda} g^(λ)=2π 1λ2sin(λ)=π2 λsin(λ)

通常使用 (\text{sinc}) 函数简化这个表达式,定义为 (\text{sinc}(\lambda) = \frac{\sin(\lambda)}{\lambda}):

g ^ ( λ ) = 2 π ⋅ sinc ( λ ) \hat{g}(\lambda) = \sqrt{\frac{2}{\pi}} \cdot \text{sinc}(\lambda) g^(λ)=π2 sinc(λ)

这就是 g ( x ) g(x) g(x) 的一维傅里叶变换的结果。

最值问题

Ω = { ( x , y ) ∣ x 2 + y 2 < π 2 4 } \Omega=\{(x,y)|x^2+y^2<\frac{\pi^2}{4}\} Ω={(x,y)x2+y2<4π2} u ∈ C ( Ω ‾ ) ∩ C 2 ( Ω ) u\in C(\overline{\Omega})\cap C^2(\Omega) uC(Ω)C2(Ω) 并且
{ Δ u = u x x + u y y = 0 ,   ( x , y ) ∈ Ω u = sin ⁡ ( 2 x ) ,   ( x , y ) ∈ ∂ Ω \begin{cases} & \Delta u=u_{xx}+u_{yy}=0,\ (x,y)\in \Omega\\ & u=\sin(2x),\ (x,y)\in \partial\Omega\\ \end{cases} {Δu=uxx+uyy=0, (x,y)Ωu=sin(2x), (x,y)Ω,那么在 Ω ‾ \overline{\Omega} Ω 上, u u u 的最大值和最小值分别是?

对于这个问题,我们可以利用拉普拉斯方程的性质,特别是它在特定边界条件下的解的性质来找到函数 u u u 在闭区域 Ω ‾ \overline{\Omega} Ω 上的最大值和最小值。

  1. 理解问题和区域

    • 区域 Ω \Omega Ω 是以原点为中心,半径为 π 2 \frac{\pi}{2} 2π 的开圆盘。
    • 边界 ∂ Ω \partial\Omega Ω 上的函数值由 u = sin ⁡ ( 2 x ) u=\sin(2x) u=sin(2x) 给定。
  2. 使用极坐标表示

    • 考虑到 Ω \Omega Ω 是一个圆形区域,我们可以使用极坐标 ( r , θ ) (r, \theta) (r,θ) 来表示点 ( x , y ) (x, y) (x,y),其中 x = r cos ⁡ θ x = r\cos\theta x=rcosθ y = r sin ⁡ θ y = r\sin\theta y=rsinθ
  3. 边界条件

    • 在边界 ∂ Ω \partial\Omega Ω 上,由于 x = π 2 cos ⁡ θ x = \frac{\pi}{2} \cos\theta x=2πcosθ u u u 的边界条件可表示为 u ( π 2 , θ ) = sin ⁡ ( 2 × π 2 cos ⁡ θ ) u(\frac{\pi}{2}, \theta) = \sin(2 \times \frac{\pi}{2} \cos\theta) u(2π,θ)=sin(2×2πcosθ)
  4. 最大最小值原理

    • 拉普拉斯方程满足最大最小值原理,即函数在其定义域内的内部取不到最大值和最小值,除非该函数在整个区域内为常数
    • 因此, u u u Ω \Omega Ω 内部的最大值和最小值必须在边界 ∂ Ω \partial\Omega Ω 上取得。
  5. 分析边界上的函数值

    • 考虑到 u u u 在边界上的值为 sin ⁡ ( 2 × π 2 cos ⁡ θ ) = sin ⁡ ( π cos ⁡ θ ) \sin(2 \times \frac{\pi}{2} \cos\theta) = \sin(\pi \cos\theta) sin(2×2πcosθ)=sin(πcosθ)
    • 函数 sin ⁡ ( π cos ⁡ θ ) \sin(\pi \cos\theta) sin(πcosθ) [ − 1 , 1 ] [-1, 1] [1,1] 范围内的 cos ⁡ θ \cos\theta cosθ 变化下,将取得其最大值 1 1 1 和最小值 − 1 -1 1,因为 sin ⁡ ( t ) \sin(t) sin(t) [ − π , π ] [-\pi, \pi] [π,π] 范围内从 − 1 -1 1 1 1 1 变化。
  6. 结论

    • 因此,在 Ω ‾ \overline{\Omega} Ω 上, u u u 的最大值为 1 1 1,最小值为 − 1 -1 1

以上分析基于 u u u 在边界上的特定形式和拉普拉斯方程的性质。这里的关键点是利用了最大最小值原理和边界条件的特性。

最值问题二

Ω = { ( x , y ) ∣ x 2 + y 2 < 1 } \Omega=\{(x,y)|x^2+y^2<1\} Ω={(x,y)x2+y2<1} u ∈ C ( Ω ‾ ) ∩ C 2 ( Ω ) u\in C(\overline{\Omega})\cap C^2(\Omega) uC(Ω)C2(Ω) 并且 u u u 满足
{ − Δ u = − u x x − u y y = 0 ,   ( x , y ) ∈ Ω u = sin ⁡ ( 2 π x ) ,   ( x , y ) ∈ ∂ Ω \begin{cases} -\Delta u=-u_{xx}-u_{yy}=0,\ (x,y)\in \Omega\\ u=\sin(2\pi x),\ (x,y)\in \partial\Omega\\ \end{cases} {Δu=uxxuyy=0, (x,y)Ωu=sin(2πx), (x,y)Ω那么在 Ω ‾ \overline{\Omega} Ω 上, u u u 的最大值和最小值分别是?

这里给定的方程是拉普拉斯方程( Δ u = 0 \Delta u = 0 Δu=0),这表示 u u u 是一个调和函数。调和函数在其定义域内具有一些特殊的性质,尤其是极值原理和平均值性质。

首先,我们知道区域 Ω = { ( x , y ) ∣ x 2 + y 2 < 1 } \Omega = \{(x, y) \mid x^2 + y^2 < 1\} Ω={(x,y)x2+y2<1} 是单位圆盘,边界 ∂ Ω \partial \Omega Ω 是单位圆周。边界条件是 u ( x , y ) = sin ⁡ ( 2 π x ) u(x, y) = \sin(2\pi x) u(x,y)=sin(2πx) 在单位圆上成立。因为 sin ⁡ ( 2 π x ) \sin(2\pi x) sin(2πx) 的值域是 [ − 1 , 1 ] [-1, 1] [1,1],故在圆周上 u u u 的取值范围也是 [ − 1 , 1 ] [-1, 1] [1,1]

调和函数的极值原理告诉我们,调和函数在闭区域上的最大值和最小值只能在边界上取得。这是因为如果调和函数在区域内部的某点取得局部极值,那么它在该点附近必须是常数(这来自于调和函数在任意小邻域内的值等于其在这个邻域上的平均值)。因此, u u u Ω ‾ \overline{\Omega} Ω 上的最大值和最小值必须在 ∂ Ω \partial \Omega Ω 上取得。

可以考虑 sin ⁡ ( 2 π x ) \sin(2\pi x) sin(2πx) 的周期性和单位圆上 x x x 坐标的变化。在圆 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1 上, x x x 的值从 − 1 -1 1 变化到 1 1 1。这意味着:

  • x = 0 x = 0 x=0 时, sin ⁡ ( 2 π x ) = sin ⁡ ( 0 ) = 0 \sin(2\pi x) = \sin(0) = 0 sin(2πx)=sin(0)=0
  • x = 1 2 x = \frac{1}{2} x=21 时, sin ⁡ ( 2 π ⋅ 1 2 ) = sin ⁡ ( π ) = 0 \sin(2\pi \cdot \frac{1}{2}) = \sin(\pi) = 0 sin(2π21)=sin(π)=0
  • x = 1 x = 1 x=1 x = − 1 x = -1 x=1 时, sin ⁡ ( 2 π ⋅ 1 ) = sin ⁡ ( 2 π ⋅ − 1 ) = sin ⁡ ( 2 π ) = 0 \sin(2\pi \cdot 1) = \sin(2\pi \cdot -1) = \sin(2\pi) = 0 sin(2π1)=sin(2π1)=sin(2π)=0
  • x = 1 4 x = \frac{1}{4} x=41 时, sin ⁡ ( 2 π ⋅ 1 4 ) = sin ⁡ ( π 2 ) = 1 \sin(2\pi \cdot \frac{1}{4}) = \sin(\frac{\pi}{2}) = 1 sin(2π41)=sin(2π)=1
  • x = 3 4 x = \frac{3}{4} x=43 时, sin ⁡ ( 2 π ⋅ 3 4 ) = sin ⁡ ( 3 π 2 ) = − 1 \sin(2\pi \cdot \frac{3}{4}) = \sin(\frac{3\pi}{2}) = -1 sin(2π43)=sin(23π)=1

因此,边界条件的最大值是 1 1 1,在 x = 1 4 x = \frac{1}{4} x=41(对应点 ( 2 2 , 2 2 ) (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) (22 ,22 ))处取到,而最小值是 − 1 -1 1,在 x = 3 4 x = \frac{3}{4} x=43(对应点 ( − 2 2 , − 2 2 ) (-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}) (22 ,22 ))处取到。

所以最终, u u u Ω ‾ \overline{\Omega} Ω 上的最大值是 1 1 1,最小值是 − 1 -1 1

因此, u u u Ω ‾ \overline{\Omega} Ω 上的最大值是 1 1 1,最小值是 − 1 -1 1。这两个值都在边界上实现,且 u u u 在内部不会超过这两个极值。

特征值问题

S-L问题 { d 2 X ( x ) d x 2 + λ X ( x ) = 0 , x ∈ ( 0 , 1 ) x ( 0 ) = 0 , d X ( 1 ) d x = 0 \begin{cases} & \frac{d^2X(x)}{dx^2}+\lambda X(x)=0,\quad x\in(0,1)\\ & x(0)=0, \frac{dX(1)}{dx}=0\\ \end{cases} {dx2d2X(x)+λX(x)=0,x(0,1)x(0)=0,dxdX(1)=0的特征值 λ k = ? \lambda_k=? λk=?,特征函数 X k = ? X_k=? Xk=?,其中 k = ? k=? k=?

要解决施图姆-刘维尔问题(Sturm-Liouville problem),我们需要考虑如下常微分方程及其边界条件:
d 2 X ( x ) d x 2 + λ X ( x ) = 0 , x ∈ ( 0 , 1 ) \frac{d^2X(x)}{dx^2} + \lambda X(x) = 0, \quad x \in (0, 1) dx2d2X(x)+λX(x)=0,x(0,1) X ( 0 ) = 0 , d X ( 1 ) d x = 0 X(0) = 0, \quad \frac{dX(1)}{dx} = 0 X(0)=0,dxdX(1)=0

首先,对于不同的 λ \lambda λ 值,方程的解形式会不同:

  1. λ > 0 \lambda > 0 λ>0
    方程 d 2 X d x 2 + λ X = 0 \frac{d^2X}{dx^2} + \lambda X = 0 dx2d2X+λX=0 有解 X ( x ) = A cos ⁡ ( λ x ) + B sin ⁡ ( λ x ) X(x) = A \cos(\sqrt{\lambda}x) + B \sin(\sqrt{\lambda}x) X(x)=Acos(λ x)+Bsin(λ x)

    利用边界条件 X ( 0 ) = 0 X(0) = 0 X(0)=0
    X ( 0 ) = A cos ⁡ ( 0 ) + B sin ⁡ ( 0 ) = A = 0 X(0) = A \cos(0) + B \sin(0) = A = 0 X(0)=Acos(0)+Bsin(0)=A=0
    所以, X ( x ) = B sin ⁡ ( λ x ) X(x) = B \sin(\sqrt{\lambda}x) X(x)=Bsin(λ x)

    利用边界条件 d X ( 1 ) d x = 0 \frac{dX(1)}{dx} = 0 dxdX(1)=0
    d X d x = B λ cos ⁡ ( λ x ) , d X ( 1 ) d x = B λ cos ⁡ ( λ ) = 0 \frac{dX}{dx} = B \sqrt{\lambda} \cos(\sqrt{\lambda}x), \quad \frac{dX(1)}{dx} = B \sqrt{\lambda} \cos(\sqrt{\lambda}) = 0 dxdX=Bλ cos(λ x),dxdX(1)=Bλ cos(λ )=0
    要使 cos ⁡ ( λ ) = 0 \cos(\sqrt{\lambda}) = 0 cos(λ )=0,必须有:
    λ = ( 2 k + 1 ) π 2 , k = 0 , 1 , 2 , … \sqrt{\lambda} = \frac{(2k+1)\pi}{2}, \quad k = 0,1, 2, \dots λ =2(2k+1)π,k=0,1,2,
    因此,
    λ k = ( ( 2 k + 1 ) π 2 ) 2 \lambda_k = \left(\frac{(2k+1)\pi}{2}\right)^2 λk=(2(2k+1)π)2

    对应的特征函数为:
    X k ( x ) = sin ⁡ ( ( 2 k + 1 ) π 2 x ) X_k(x) = \sin\left(\frac{(2k+1)\pi}{2} x\right) Xk(x)=sin(2(2k+1)πx)

  2. λ = 0 \lambda = 0 λ=0
    方程简化为 d 2 X d x 2 = 0 \frac{d^2X}{dx^2} = 0 dx2d2X=0,通解为 X ( x ) = A x + B X(x) = Ax + B X(x)=Ax+B
    利用 X ( 0 ) = 0 X(0) = 0 X(0)=0 得到 B = 0 B = 0 B=0,因此 X ( x ) = A x X(x) = Ax X(x)=Ax
    边界条件 d X ( 1 ) d x = 0 \frac{dX(1)}{dx} = 0 dxdX(1)=0 要求 A = 0 A = 0 A=0,因此这种情况不提供非零解。

  3. λ < 0 \lambda < 0 λ<0
    这将导致解为指数型,不符合边界条件,因此不考虑。

所以,结论是:

  • 特征值 λ k = ( ( 2 k + 1 ) π 2 ) 2 \lambda_k = \left(\frac{(2k+1)\pi}{2}\right)^2 λk=(2(2k+1)π)2,其中 k = 0 , 1 , 2 , … k = 0,1, 2, \dots k=0,1,2,
  • 特征函数 X k ( x ) = sin ⁡ ( ( 2 k + 1 ) π 2 x ) X_k(x) = \sin\left(\frac{(2k+1)\pi}{2} x\right) Xk(x)=sin(2(2k+1)πx),其中 k = 0 , 1 , 2 , … k = 0,1, 2, \dots k=0,1,2,

什么是 PDE 定解问题的稳定性?为何有必要研究稳定性?列举2个研究稳定性的工具

在偏微分方程(PDE)的研究中,定解问题解的稳定性指的是对于初始条件或边界条件的小幅度改变,解的行为如何随之变化如果初始条件或边界条件的微小变动只引起解的微小变化,那么这个解就是稳定的;反之,如果小的变化导致解发生大的变化,解则是不稳定的。

研究解的稳定性非常重要,原因如下:

  1. 物理和工程应用的实用性:许多物理和工程问题通过偏微分方程来建模,如流体动力学、热传递和电磁理论等。这些应用中,系统的实际工作环境往往伴随着各种扰动(例如,材料属性的轻微变化、外部条件的微小波动等),因此,必须确保在这些小扰动下,系统的模型依然能给出稳定的预测。
  2. 数值模拟的可靠性:在通过数值方法求解偏微分方程时,模型的稳定性直接影响计算结果的准确性和可信度。数值不稳定会导致计算错误累积,结果偏离真实情况。

研究解的稳定性的工具主要包括:

  • 能量方法:例如能量不等式,这种方法涉及构建一个能量函数(或Lyapunov函数),该函数随时间的变化能表现出解的稳定性。通过证明这个能量在适当条件下不增加,可以证明解的稳定性。这种方法特别适用于波动方程和其他一些保守系统。

  • 最大模估计(极值原理)

写出一个二维热传导方程边界条件为 Robin 类型的混合问题

{ u t − a 2 Δ u = f ( x , y , t ) , ( x , y , t ) ∈ Ω × ( 0 , T ) u ∣ t = 0 = φ ( x , y ) , ( x , y ) ∈ Ω α 1 u + α 2 ∂ u ∂ n ∣ Ω = φ ( x , y , t ) , ( x , y ) ∈ ∂ Ω , t ∈ ( 0 , T ) \begin{cases} u_{t} - a^2\Delta u = f(x,y,t), \quad (x,y,t)\in \Omega \times (0,T)\\ u|_{t=0}=\varphi(x,y),\quad (x,y)\in \Omega \\ \alpha_1 u+\alpha_2 \frac{\partial u}{\partial n}|_{\Omega}=\varphi(x,y,t),\quad (x,y)\in \partial\Omega, t\in(0,T) \\ \end{cases} uta2Δu=f(x,y,t),(x,y,t)Ω×(0,T)ut=0=φ(x,y),(x,y)Ωα1u+α2nuΩ=φ(x,y,t),(x,y)Ω,t(0,T)
在这里插入图片描述

请列举 2 种求解 PDE 定解问题的方法,并简单解释背后的数学或物理原理

一维热传导方程初值问题的 Fourier \text{Fourier} Fourier 变换解法,将偏微分方程转化为常微分方程进行求解。
一维波动方程混合问题的分离变量解法,驻波法。弦振动可以看作一列具有特定频率的驻波的叠加。

在解一维波动方程时,我们得到的解通常是驻波的形式,因为解涉及时间函数的正弦和余弦项,以及空间函数的正弦项。这种解描绘了一种在固定边界内振动的波,其波形不随时间传播而只是在各个位置振动,因此称为“驻波”。

给出边界条件使得方程适定

定义在 Q = { ( x , t ) ∣ 0 < x < 1 , 0 < t ≤ T } Q=\{(x,t)|0<x<1,0<t\leq T\} Q={(x,t)∣0<x<1,0<tT} 上的方程 u t + u x = f u_t+u_x=f ut+ux=f,在给出初始条件 u ( x , 0 ) = φ ( x ) , x ∈ [ 0 , 1 ] u(x,0)=\varphi(x), x\in[0,1] u(x,0)=φ(x),x[0,1]的前提下,请再给出边界条件使得这个方程是well-posed.

为了使得方程 u t + u x = f u_t + u_x = f ut+ux=f 在区域 Q = { ( x , t ) ∣ 0 < x < 1 , 0 < t ≤ T } Q = \{(x,t) \mid 0 < x < 1, 0 < t \leq T\} Q={(x,t)0<x<1,0<tT} 上是well-posed(即问题的解存在、唯一并且对初始数据和边界数据连续依赖),我们需要适当地指定初始条件和边界条件。

初始条件已经给出:
u ( x , 0 ) = φ ( x ) , x ∈ [ 0 , 1 ] u(x,0) = \varphi(x), \quad x \in [0,1] u(x,0)=φ(x),x[0,1]

对于边界条件,我们需要考虑方程的特征线。对于方程 u t + u x = f u_t + u_x = f ut+ux=f,特性线是由方程 d x / d t = 1 dx/dt = 1 dx/dt=1 给出,这意味着特征线在 ( x , t ) (x,t) (x,t) 平面上是斜率为 1 的直线,形式为 x = x 0 + t x = x_0 + t x=x0+t。因此,信息沿着特性线从左到右传播。

由于信息是从左向右传播的,因此我们需要在区间的左边界 x = 0 x=0 x=0 处指定边界条件,以控制从左边界进入计算域的信息。这样,对于边界条件,一个自然的选择是在左边界 x = 0 x=0 x=0 处指定 u ( 0 , t ) u(0,t) u(0,t) 的值:
u ( 0 , t ) = g ( t ) , 0 ≤ t ≤ T u(0,t) = g(t), \quad 0 \leq t \leq T u(0,t)=g(t),0tT
其中 g ( t ) g(t) g(t) 是一个已知函数,它提供了在 x = 0 x=0 x=0 处随时间变化的边界值。

总结一下,为了使得问题是well-posed,我们指定了如下条件:

  1. 初始条件 u ( x , 0 ) = φ ( x ) , x ∈ [ 0 , 1 ] u(x,0) = \varphi(x), \quad x \in [0,1] u(x,0)=φ(x),x[0,1]
  2. 边界条件 u ( 0 , t ) = g ( t ) , 0 ≤ t ≤ T u(0,t) = g(t), \quad 0 \leq t \leq T u(0,t)=g(t),0tT

这些条件确保了方程解的存在性、唯一性以及稳定性。

求傅里叶变换

f ( x ) = { 1 , ∣ x ∣ < 2 0 , ∣ x ∣ ≥ 2 f(x)=\begin{cases} 1,\quad |x|<2\\ 0,\quad |x|\geq 2\\ \end{cases} f(x)={1,x<20,x2 f ′ ( x ) f'(x) f(x)

  • 30
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值