YOLO系列学习
文章平均质量分 94
Wils0nEdwards
这个作者很懒,什么都没留下…
展开
-
YOLOv2学习
使用一种新颖的多尺度训练方法,相同的YOLOv2模型可以在不同的尺寸上运行。在速度和准确性之间提供了一个简单的权衡。提出了一种目标检测与分类联合训练的方法。使用该方法,作者在COCO检测数据集和ImageNet分类数据集上同时训练YOLO9000。如何理解这句话?这句话来自YOLO9000论文的一个核心观点,讲的是YOLO9000模型如何利用联合训练(joint training)机制,使得模型能够预测那些没有标注检测数据的对象类别。在机器学习和计算机视觉中,标注数据是模型学习识别和理解图像的关键。原创 2024-03-18 22:28:58 · 1190 阅读 · 0 评论 -
YOLOv7学习
将灵活高效的训练工具与所提出的网络结构和复合缩放方法相结合。提出的方法将侧重于训练过程的优化。将重点研究一些优化模块和优化方法,这些模块和优化方法可以在不增加推理成本的情况下,增强训练成本以提高目标检测的准确性。称这些模块和优化方法为可训练的bag of freebies。Group Convolution(分组卷积)是一种特殊的卷积操作,用于减少计算量和参数数量,同时保持网络的表达能力。它是普通卷积的一种变体,在普通卷积中,每个输出特征图是通过将输入特征图与一组卷积核进行卷积得到的。原创 2024-03-20 15:24:27 · 877 阅读 · 0 评论 -
YOLOv4学习
在深度学习和计算机视觉中,“parameter aggregation”这个术语不是一个标准术语,因此它可能会有不同的含义,取决于具体的上下文。在训练多个模型或者在不同时间点保存同一个模型的多个版本时,参数聚合可能指的是将这些不同模型的参数按照某种策略进行融合,以得到一个性能更优的模型。例如,在集成学习中,可能会通过平均或加权平均多个模型的参数来提高测试时的性能。在多任务学习中,参数聚合可能指的是共享层的参数需要在多个任务之间进行聚合,使得模型在训练过程中能够同时学习到多个任务的相关性能。原创 2024-03-19 14:16:27 · 907 阅读 · 0 评论 -
YOLOv3学习
主要从别人那里获得好点子。我们还训练了一个新的分类器网络,原创 2024-03-19 10:23:44 · 872 阅读 · 0 评论 -
YOLOv1学习
在深度学习和计算机视觉中,上采样层(Upsampling Layer)和下采样层(Downsampling Layer)是卷积神经网络中用于改变数据维度的层。原创 2024-03-18 14:23:28 · 730 阅读 · 0 评论