神经网络基本介绍(四):前馈网络(下)多层感知机

本文深入探讨了多层感知机(MLP),解释了其如何通过添加隐藏层克服单层感知器的局限性,每个隐藏层形成一个超平面感知器网络,能够对输入模式进行线性分类。通过多层结合,MLP能实现复杂输入模式的分类。总结了感知机的优缺点,包括作为其他前馈网络基础的线性阈值单元结构和学习算法,以及相对BP神经网络较低的容忍度和分类精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(四)multi-layer perceptron network

 

Can solve Exclusive Linear-non-classifiable input patterns,这解决了单层感知器的缺点.本质上是由于加了隐藏层的原因。

 

Each layer equivalent to a Single-Layer Perceptron Networks
qth layer forms a nq-1 dimension Super-Plane perceptron networks, which can linearly classify the
input patterns of this layer .Through Multi-Layer combination, eventually can implement the complex classification to input patterns.

 

下面是一个具体解决线性不可分思路。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值