Pytorch
comli_cn
算法工程师
展开
-
Pytorch如何保存训练好的模型
0.为什么要保存和加载模型用数据对模型进行训练后得到了比较理想的模型,但在实际应用的时候不可能每次都先进行训练然后再使用,所以就得先将之前训练好的模型保存下来,然后在需要用到的时候加载一下直接使用。模型的本质是一堆用某种结构存储起来的参数,所以在保存的时候有两种方式,一种方式是直接将整个模型保存下来,之后直接加载整个模型,但这样会比较耗内存;另一种是只保存模型的参数,之后用到的时候再创建一个同样结构的新模型,然后把所保存的参数导入新模型。1.两种情况的实现方法(1)只保存模型参数字典(推荐)#保存原创 2020-07-22 17:43:27 · 53498 阅读 · 11 评论 -
CNN的输入输出运算过程及其Pytorch实现
0. 卷积神经网络的结构如上图所示,一个卷积神经网络由若干卷积层、池化层、全连接层组成。我们可以通过对其中要素的重组来构成不同的卷积神经网络。构成不同卷积神经网络的公式为:INPUT−>[[CONV]∗N−>POOL?]∗M−>[FC]∗KINPUT -> [[CONV]*N -> POOL?]*M -> [FC]*KINPUT−>[[CONV]∗N−>POOL?]∗M−>[FC]∗K以上图为例,其结构为:INPUT−>[[CONV]∗1−原创 2020-06-17 09:10:51 · 8553 阅读 · 8 评论 -
Pytorch中标量对向量求导和向量对向量求导的详解
1.标量对向量求导标量可以直接对向量求导import torchp = torch.tensor([2.0, 3.0, 5.0], requires_grad=True)q = p*2+1z = torch.mean(q)z.backward()print(p.grad)print(p.grad*p)结果:tensor([0.6667, 0.6667, 0.6667])tensor([1.3333, 2.0000, 3.3333], grad_fn=<MulBackward0&原创 2020-06-03 12:46:31 · 3522 阅读 · 1 评论