Wavelet Tutorial
comli_cn
算法工程师
展开
-
小波教程-part4-多分辨率分析:离散小波变换
1. 为什么需要离散小波变换尽管离散连续小波变换可以通过计算机计算连续小波变换,但这并不是真正的离散变换。 实际上,小波序列只是CWT(连续小波变换)的一个采样版本,就信号的重构而言,它提供的信息是高度冗余的。 另一方面,这种冗余需要大量的计算时间和资源。 另一方面,离散小波变换(DWT)为原始信号的分析和合成提供了足够的信息,同时大大减少了计算时间。与CWT相比,DWT易于实施。 DWT的基本概念以及它的属性和用于计算它的算法将在本节中介绍。 与前几章一样,提供了一些示例来帮助解释DWT。2. 离散翻译 2020-10-22 17:13:05 · 5521 阅读 · 4 评论 -
小波教程-part3-多分辨率分析和连续小波变换
1. 多分辨率分析尽管时间和频率分辨率问题是物理现象(海森堡不确定性原理)的结果,并且无论使用哪种变换都存在,但是可以通过使用称为多分辨率分析(MRA)的替代方法来分析任何信号。 顾名思义,MRA可以分析具有不同分辨率的不同频率的信号,但不能像STFT那样对每个频谱分量进行均等的解析。MRA被设计为在高频时具有良好的时间分辨率和较差的频率分辨率,在低频时具有良好的频率分辨率和较差的时间分辨率。 当手头信号在短时间内具有高频分量而在长时间内具有低频分量时,这种方法尤其有意义。 幸运的是,在实际应用中遇到的翻译 2020-10-21 20:00:55 · 5112 阅读 · 3 评论 -
小波教程-part2-傅立叶变换和短时傅立叶变换
1. 基本原理让我们简要回顾一下第一部分。 我们基本上需要小波变换(WT)来分析非平稳信号,即其频率响应随时间变化的信号。 我已经写过傅立叶变换(FT)不适合非平稳信号,并且已经展示了一些例子以使其更加清晰。 快速回顾一下,让我举一个例子。 假设我们有两个不同的信号。 还假设它们都具有相同的光谱成分,但有一个主要区别。 假设其中一个信号始终具有四个频率分量,另一个信号在不同时间具有相同的四个频率分量。 如本教程第1部分中的示例所示,这两个信号的FT相同。 尽管两个信号完全不同,但它们的FT的(幅度)是一样翻译 2020-10-20 16:04:19 · 1215 阅读 · 0 评论 -
小波教程-part1-基本概念和小波理论概述
例如下式所代表的信号:x(t)=cos(2π⋅10t)+cos(2π⋅25t)+cos(2π⋅50t)+cos(2π⋅100t)x(t) = cos(2 \pi \cdot 10 t) + cos(2 \pi \cdot 25 t) + cos(2 \pi \cdot 50 t) + cos(2 \pi \cdot 100 t)x(t)=cos(2π⋅10t)+cos(2π⋅25t)+cos(2π⋅50t)+cos(2π⋅100t)是一个平稳信号,因为在任意时刻这个信号都包含了10、25、50和100H翻译 2020-10-18 11:08:23 · 1222 阅读 · 0 评论