机器学习相关
文章平均质量分 58
comli_cn
算法工程师
展开
-
手推支持向量机(一)
原创 2021-06-03 11:56:39 · 194 阅读 · 0 评论 -
精确率、准确率、召回率、ROC、AUC的概念,计算方式和代码实现
1. 阳性和阴性生活中最常见用到阳性和阴性的地方是检测疾病的时候,这时候检测的是患者有没有得病,有的话就是阳性,没有的话就是阴性。但这里的阴性和阳性代表什么是认为规定的,在机器学习中有正样本和负样本,更具体一点在机器学习的异常检测中有正常值和异常值,但在这个领域正值或正常值一般用阳性来表示,而负值或异常值一般用阴性来表示。2.混淆矩阵既然要对样本进行学习然后用模型预测测试集样本是正样本还是负样本,那么就必然有以下几种情况:∙\bullet∙真阳性:标签为真,预测也为真∙\bullet∙真阴性:条原创 2021-01-17 20:02:21 · 5155 阅读 · 1 评论 -
回声状态网络(ESN)的公式推导及代码实现
Wres∈RN∗NW_{res}\in R^{N*N}Wres∈RN∗N,r∈RN∗1r\in R^{N*1}r∈RN∗1,WIR∈RN∗MW_{IR}\in R^{N*M}WIR∈RN∗M,u∈RM∗1u\in R^{M*1}u∈RM∗1,v∈RL∗1v\in R^{L*1}v∈RL∗1因为r0r_0r0的初始值为0,所以忽略前d步库中的瞬时值预测的时候不会再给单独的输入了,而是会将输出作为输入进行递推计算。一般WIRW_{IR}WIR各元素会初始化为[−α,α][-\alpha,\.原创 2020-11-01 15:51:11 · 7916 阅读 · 7 评论 -
Python和sklearn如何保存训练好的模型
0. 前言当我们训练好一个model后,下次如果还想用这个model,我们就需要把这个model保存下来,下次直接导入就好了,不然每次都跑一遍,训练时间短还好,要是一次跑好几天的那怕是要天荒地老了。。sklearn官网提供了两种保存model的方法:1.使用python自带的picklefrom sklearn.ensemble import RandomForestClassifierfrom sklearn import datasetsimport pickle#方法一:python自带转载 2020-07-22 17:58:38 · 18927 阅读 · 3 评论 -
sklearn.svm.OneClassSVM用户手册(中文)
class sklearn.svm.OneClassSVM(kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1)无监督异常值检测。估计高维分布的支持。该实现基于libsvm。在用户手册...翻译 2020-01-11 21:52:41 · 8288 阅读 · 0 评论 -
REF特征选择方法的原理+用法+误区
这段说明是在svm文件里面的classes.py中得到的,里面讲的是coef_是一个大小为类别数乘以特征数(n_classes*n_features)的矩阵,里面存放着分配给各个特征的权重,如果是二分类则shape = [n_features]。下面讲了只有在线性内核里面才有: Attributes ---------- coef_ : array, shape = [n_fea...原创 2019-12-07 11:32:25 · 7945 阅读 · 4 评论 -
Relief过滤式特征选择算法原理+python实现
给定一组数据:样本类别feature1feature201131111212430334044第一列是类别,这里分两类,第二、三列是特征值接下来使用Relief特征选择算法比较一下这两个特征哪个更对于分类更有作用。首先我们随机选择一个样本,比如选择了样本1,接下来选择样本1对于feature1的“猜中近邻”和...原创 2019-12-05 20:17:15 · 5974 阅读 · 3 评论 -
一类支持向量机
如果所提供的训练样本只有一种类别,但是测试样本中可能包含着第二类样本,那么如何在训练样本只有一类的前提下来对测试样本进行正确的分类呢?这时候一类支持向量机就应运而生了,它的基本思想是在训练的样本中计算出一个半径最小的超球面将所有测试样本都包含在这个超球体内部。那么当用这个超球体去给测试集分类的时候,落在超球体内部的样本即为第一类,落在超球体外部的样本为第二类。上面所说的一种情况是比较极端的,即...原创 2019-10-30 16:49:30 · 2870 阅读 · 0 评论 -
感知机理论用于线性可分数据集分类+例题计算+编程实现
一、感知机原理简单来说就是给定一组数据集(以二维为例),在二维平面上求出一根直线将标记好的数据集分为两类,直线一边为一类,另一边为另一类。例如给定一个数据集:其中:此时假设分类直线的函数为:如果分类正确,那么对于所有y=1的实例i,有:对于所有y=-1的实例i,有:那么误分类就是:这个数据集中某个实例到分类超平面的距离为:误分类点到分类超平面的总距离为:故感知...原创 2019-09-28 22:09:02 · 4306 阅读 · 0 评论 -
线性回归和逻辑回归
原创 2019-08-31 21:37:20 · 130 阅读 · 0 评论 -
坐标上升算法
最近在做一个项目用到了支持向量机(SVM),在阅读支持向量机的原理的文章时遇到了很多困难,其中一个困扰我和很久的就是在对原方程进行了拉格朗日对偶变换后怎么求参数。书上介绍说应该用SMO算法,但因为我数学基础比较差,所以愣是没看懂书上讲的是什么意思,后来查了好多资料得知SMO算法脱胎于坐标上升算法。之后经过学习大概懂了这个算法的思路,接下来我写一下让数学基础不太好的人也能看懂的过程。废话不多说,咱...原创 2019-07-27 16:36:37 · 815 阅读 · 0 评论