python中常用的包
文章平均质量分 73
comli_cn
算法工程师
展开
-
Python中argparse模块的用法
0. argparse模块argsparse是python的命令行解析的标准模块,命令行选项、参数和子命令解析器。内置于python,不需要安装。这个库可以让我们直接在命令行中就可以向程序中传入参数并让程序运行。1. 使用格式(1)导入argparse包;(2)创建解析器:创建一个 ArgumentParser 对象,ArgumentParser 对象包含将命令行解析成 Python 数据类型所需的全部信息(3) 添加参数:给一个 ArgumentParser 添加程序参数信息是通过调用 add_原创 2021-04-10 09:51:33 · 580 阅读 · 0 评论 -
.json是什么以及如何使用python的json模块从json文件读取数据
1. json文件是什么从结构上看,所有的数据(data)最终可以分解成三种类型:第一种类型是标量scalar,也就是一个单独的字符串string或数字numbers,比如“成都”这个单独的词。第二种类型是序列sequence,也就是若干个相关的数据按照一定顺序并列在一起,又叫做数组array,或者列表list,比如“成都,重庆”。第三种类型是映射mapping,也就是一个名/值name/value,即数据有一个名称,还有一个与之相对应的值,这又称作散列hash或字典dictionary,比如“蓉城原创 2021-03-31 15:24:35 · 586 阅读 · 2 评论 -
torch.nn.Conv1d,torch.nn.Conv2d和torch.nn.Conv3d的应用和相关计算
1. torch.nn.Conv1d和MaxPool1dConv1d()函数就是利用指定大小的一维卷积核对输入的多通道一维输入信号进行一维卷积操作的卷积层。因为卷积神经网络一般用来处理图片数据,常使用torch.nn.Conv2d,所以torch.nn.Conv1d不太常见,但事实上卷积神经网络也是可以处理非图片的一维数据的。用MaxPool1d只对输入的最后一维进行最大池化,用MaxPool2d会对输入的最后两维都进行最大池化。...原创 2021-01-13 16:02:40 · 2036 阅读 · 0 评论 -
用torch.nn.Upsample实现上采样
1. 定义CLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)上采样一个给定的多通道的 1D (temporal,如向量数据), 2D (spatial,如jpg、png等图像数据) or 3D (volumetric,如点云数据)数据假设输入数据的格式为minibatch x channels x [optional depth] x [optional height] x转载 2021-01-12 20:39:15 · 2998 阅读 · 0 评论 -
如何将.csv文件数据直接读取为numpy array型数据(np.genfromtxt()函数)
1. 函数简介(1)完整形式numpy.genfromtxt(fname, dtype=<type 'float'>, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace原创 2021-01-03 16:39:34 · 14733 阅读 · 5 评论 -
Pandas中set_index和reset_index的用法及区别
1.set_indexDataFrame可以通过set_index方法,可以设置单索引和复合索引。DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)append添加新索引,drop为False,inplace为True时,索引将会还原为列。In [307]: dataOut[307]: a b c d0 bar one z 1.01转载 2020-06-07 15:26:26 · 1396 阅读 · 0 评论 -
numpy和torch.tensor的张量的操作
张量的拼接np.concatenate((a1,a2,a3,…), axis=0)张量的拼接要用np.concatenate这个方法的,其中 a1,a2,a3,…是拼接的子张量,axis是维数,axis=0表示按照第一维进行拼接。例如将两个二维的张量按照第一维拼接成一个二维的张量:import numpy as npa=np.array([[1,2,3]])b=np.array([[4...原创 2020-03-11 16:02:46 · 1740 阅读 · 0 评论 -
用openpyxl模块处理excel表格、用pandas处理.csv表格、用xlrd处理.xls文件
安装openpyxl模块pip3 install --user openpyxl编程from openpyxl import * #导入openpyxl模块wb=load_workbook('表格名.xlsx') #读取excel表格sheet=wb[wb.sheetnames[0]] #读取excel表格中第一张表...原创 2019-11-21 15:27:54 · 676 阅读 · 0 评论 -
pandas中DataFrame的常用操作
1. DataFrame的创建(1)手动创建df = pd.DataFrame({'a':[1,2,3],'b':[1,2,3]})print(df)结果为: a b0 1 11 2 22 3 3(2)用panda导入文件数据例如导入.csv类型的文件,导入之后直接变成了DataFrame类型的数据df = pd.read_csv('/file_path/file_name.csv')2. DataFrame类型数据的提取因为DataFrame类型的数据通常原创 2020-12-23 21:49:02 · 1374 阅读 · 0 评论 -
Pytorch的DataLoader和Dataset以及TensorDataset的源码分析和使用
1.为什么要用DataLoader和Dataset要对大量数据进行加载和处理时因为可能会出现内存不够用的情况,这时候就需要用到数据集类Dataset或TensorDataset和数据集加载类DataLoader了。使用这些类后可以将原本的数据分成小块,在需要使用的时候再一部分一本分读进内存中,而不是一开始就将所有数据读进内存中。2.Dateset的使用pytorch中的torch.utils.data.Dataset是表示数据集的抽象类,但它一般不直接使用,而是通过自定义一个数据集来使用。来自定义数据原创 2020-12-14 22:32:48 · 1014 阅读 · 2 评论 -
Python常用包之matplotlib的使用
0. 安装并导入安装:打开终端输入pip3 install matplotlib导入:import matlpotlib as plt1. 绘图首先无论绘制什么图最后都得加上一句:plt.show()图像才能显示。原创 2020-11-22 10:29:02 · 1831 阅读 · 0 评论 -
statsmodels.tsa.arima.model.ARIMA用户手册(中文)(statsmodels包)
0. 前言class statsmodels.tsa.arima.model.ARIMA(endog, exog=None, order=0, 0, 0, seasonal_order=0, 0, 0, 0, trend=None, enforce_stationarity=True, enforce_invertibility=True, concentrate_scale=False, trend_offset=1, dates=None, freq=None, missing='none',翻译 2020-11-12 16:39:56 · 22881 阅读 · 0 评论 -
python3如何通过命令行往程序里输入参数(argparse包)
1. 定义argparse是python标准库里面用来处理命令行参数的库,通过在程序中定义好我们需要的参数,argparse 将会从 sys.argv 中解析出这些参数,并自动生成帮助和使用信息。2. 命令行参数分为位置参数和选项参数位置参数就是程序根据该参数出现的位置来确定的如:[root@openstack_1 /]# ls root/ #其中root/是位置参数选项参数是应用程序已经提前定义好的参数,不是随意指定的如:[root@openstack_1 /]# ls -l #原创 2020-11-16 11:25:09 · 5537 阅读 · 0 评论 -
Python如何将代码中产生的数据写入.csv文件(csv包)
1. 创建并打开一个.csv文件f = open('file_name.csv', 'w', encoding='utf-8')2. 按行写入csv_writer = csv.writer(f)for i in range(start, end): csv_writer.writerow(data[i])这样就将data中第start行到第end行写入了file_name.csv文件中。...原创 2020-11-18 09:39:02 · 3105 阅读 · 0 评论