ChatGPT 中的人类反馈强化学习 (RLHF) 实战

本文介绍了CSDN AI团队对ChatGPT的复现过程,重点讨论了人类反馈强化学习(RLHF)的两个阶段:奖励模型和近端策略优化算法(PPO)。通过与人类交互获取反馈,ChatGPT利用RLHF提升回答质量。奖励模型负责评分,而PPO算法则基于奖励进行策略优化。团队实现了RLHF的基本流程,但由于资源限制,尚未在大规模数据集上训练。
摘要由CSDN通过智能技术生成

目录


团队博客: CSDN AI小组


相关阅读


1 前言
在当今数字化的时代,ChatGPT 的火热程度不断升级。ChatGPT 可以处理复杂的语言任务,从而解放人力资源,提高工作效率,减少成本。ChatGPT 的先进技术和广泛应用,使得它成为了当今最炙手可热的人工智能技术之一。无论是企业、学术机构,还是科技爱好者,都对 ChatGPT 的应用前景充满期待。

在这样的背景之下,CSDN AI 团队也想对 ChatGPT 进行简单的复现。根据ChatGPT官方博客可知,ChatGPT的训练方法与 InstructGPT 的训练方法基本一致 (如图1所示),只是使用的数据集不一样。故在训练方法上,我们主要参考 InstructGPT 进行复现,基础模型使用的是 RWKV,拆分后共包含以下四个阶段:

  • (1) 语言模型预训练 (Language Model Pre-training);
  • (2) 有监督指令微调 (Supervised Fine-Tuning, SFT);
  • (3) 奖励模型的训练 (Reward Modeling, RM);
  • (4) 使用近端策略优化算法进行强化学习 (Proximal Policy Optimization, PPO).

第 (1)、(2) 阶段的 Pre-training 和 SFT 由 @zxm2015 完成,可参考文章大语言模型浅探一。本文主要介绍第 (3)、(4) 阶段的内容,即人类反馈强化学习 (Reinforcement Learning from Human Feedback, RLHF)。

在这里插入图片描述

图1 InstructGPT 模型的训练过程

2 人类反馈强化学习 (RLHF)
人类反馈强化学习 (RLHF) 是 ChatGPT 中一种用于改善其回答效果的算法。它是一种基于强化学习的方法,通过结合人类反馈来优化 ChatGPT 的回答。

在 RLHF 中,ChatGPT 学习通过和人类用户的交互来提高其回答的质量。当 ChatGPT 生成一个回答时,它会将回答展示给用户并请求用户的反馈。用户可以对回答进行评分,比如“好”、“不错”、“一般”、“差”等。ChatGPT 会将用户的反馈作为奖励或惩罚信号,以此来更新自己的模型,以更好地满足用户的需求。

RLHF 可分为两个部分。第一部分是奖励模型,人类反馈主要就体现在这个地方;第二部分采用近端策略优化算法的强化学习阶段,基于奖励模型的反馈来优化模型,最终得到满足人类偏好的语言模型。下面将对这两个部分进行详细的说明。
2.1 奖励模型 (RM)
在 RLHF 之前,语言模型已经进行了 SFT (后续称该模型为 SFT Model),而奖励模型的任务主要是对 SFT Model 的回复进行打分,打分越高表示回答效果越好。训练好奖励模型之后,就可以用于下一阶段的 PPO 进行强化学习的调优,奖励模型是 PPO 中的一个子部分,用于 PPO 训练时提供奖励信号。

(1) 模型的输入输出
模型的输入是用户提问 (Prompt) 和 SFT Model 回复 (Response) 的 pair 对 <Prompt, Response>,输出是一个奖励得分,如下图所示:

在这里插入图片描述

图2 RM 的输入和输出

(2) 数据集的构建
这个阶段主要是通过人工标注训练数据,来训练 RM,人类反馈就体现在这个地方。在 Prompts 数据集中随机抽取问题,对于每个问题,生成 K 个不同的回答。人类标注者对这些结果综合考虑(例如:相关性、富含信息性、有害信息等诸多标准)给出排名顺序。

按照上述奖励模型的输入输出描述,构建数据集时应该是人工对 <Prompt, Response> 进行打分,但实际上对多个回答进行打分比较困难,得分是连续的,这会降低标注的速度。此外,我们其实关注的是多个选项之间哪个更好,哪个更差。所以标注的时候对多个选项进行排序就可以了,最后基于排序后的回答,构建数据集,选用合适的损失函数即可。

通常情况下,人类进行排序任务,当选项为 4-9 个 (即 K∈{4, 5, 6, 7, 8, 9}) 时速度最快且效果最准确,此处我们设定 K=4。最终一个 Prompt 我们就可以得到 C(4, 2)=6 条训练样本。

具体而言,假设我们选定了一个问题 x,接着使用 SFT Model 生成了 4 个回答 {y1, y2, y3, y4},人类标注者进行排序后为 y4 > y3 > y1 > y2},则得到的训练样本如下所示,左边<Prompt, Response>的得分要高于右边:

(<x, y4>, <x, y3>)
(<x, y4>, <x, y1>)
(<x, y4>, <x, y2>)
(<x, y3>, <x, y1>)
(<x, y3>, <x, y2>)
(<x, y1>, <x, y2>)

(3) 损失函数
根据上面构建的数据集可知,我们没有连续的得分目标去训练奖励模型,但是有正负例样本对,所以损失函数如下所示,该损失函数需要最小化:
在这里插入图片描述
其中,r(x,y) 为 <x, y> 输入到 RM 模型的得分,θ 是 RM 的参数,yw 和 yl 是输入为 x 时,SFT Model 生成的不同回答,其中人工标注时 yw > yl.

# loss function
def loss_function(prefer_reward, alter_reward):
    return -torch.mean(torch.log(torch.sigmoid(prefer_reward - alter_reward)))

(4) 核心代码
RM 的网络结构相比于 SFT Model,并不需要做太大的改动,输入 <Prompt, Response> 后,直接取最后一个 token 的 embedding,在其后面接一个线性层计算奖励得分即可

a) 线性层:

# reward 得分计算
self.pred_reward = nn.Linear(dim, 1, bias=False)

b) forword 函数

    def forward(
        self,
        x,
        mask = None,
        prompt_mask = None,
        prompt_lengths = None
    ):

        # prompt_mask 和 prompt_lengths 只能二选一
        assert not (exists(prompt_mask) and exists(prompt_lengths))

        # derive prompt mask from prompt lengths
        if exists(prompt_lengths):
            batch, seq_len = x.shape
            arange = torch.arange(seq_len, device=x.device)
            prompt_mask = repeat(arange, 'n -> b n', b = batch) < rearrange(prompt_lengths, 'b -> b 1')

        # reward model should have an understanding of which section is prompt, and which section is response
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值