keras(return_sequences)和pytorch(output, (h_n, c_n))的记录

本文记录了将Keras LSTM代码转换为Pytorch过程中的关键点,主要关注Keras的'return_sequences=True'与Pytorch LSTM输出'(h_n, c_n)'的区别。在Keras中,return_sequences=True表示每个时间步长都有输出,适合多对多的预测;反之,仅输出最后一个时间步长的值,适合多对一的预测。作者提供了一个股票预测的例子来说明这一点,并给出了动态结构的Pytorch LSTM代码示例。" 131523976,10754669,数仓分层解析:ODS、DWD、DWM与实战,"['数据仓库', '数仓模型', '数据分层', '数据库']
摘要由CSDN通过智能技术生成

近期需要将一份Keras代码转写为Pytorch,有关LSTM的东西比较麻烦,特此记录。

keras代码和介绍

pytorch LSTM的直观图

第二个链接国内可能wall,故此贴上Pytorch的理解图。

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

我遇到的keras代码是类似这样的:(return_sequences=Ture)

from keras.models import Model
from keras.layers import Input
from keras.layers import LSTM
from numpy import array
# define model
inputs1 = Input(shape=(3, 1))
lstm1 = LSTM(1, return_sequences=T
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值