数据增强的方法总结及代码实现

在训练模型的时候,经常会出现数据不够多,如此就会出现过拟合等问题,通过对训练图片进行变换可以得到泛化能力更强的网络,更好的适应应用场景。博主用自己项目中常用的一些方法代码写出来。

一、数据增强方法总结

 1、平移。在图像平面上对图像以一定方式进行平移。

2、翻转图像。沿着水平或者垂直方向翻转图像。

3、旋转角度。随机旋转图像一定角度; 改变图像内容的朝向。

4、随机颜色。对图像进行颜色抖动,对图像的每个像素RGB进行随机扰动, 常用的噪声模式是椒盐噪声和高斯噪声。

5、对比度增强。增强图像对比度,也可以用直方图均衡化。

6、亮度增强。将整个图像亮度调高。

7、颜色增强。

8、还有随机裁剪、尺度变换等代码就不赘述了。

二、数据增强方法代码

1、平移

from PIL import Image
from PIL import ImageEnhance
import os
import cv2
import numpy as np
def move(root_path,img_name,off): #平移,平移尺度为off
    img = Image.open(os.path.join(root_path, img_name))
    offset = img.offset(off,0)
    return offset

2、翻转图像

def flip(root_path,img_name):   #翻转图像
    img = Image.open(os.path.join(root_path, img_name))
    filp_img = img.transpose(Image.FLIP_LEFT_RIGHT)
    # filp_img.save(os.path.join(root_path,img_name.split('.')[0] + '_flip.jpg'))
    return filp_img

 3、旋转角度

def rotation(root_path, img_name):
    img = Image.open(os.path.join(root_path, img_name))
    rotation_img = img.rotate(20) #旋转角度
    # rotation_img.save(os.path.join(root_path,img_name.split('.')[0] + '_rotation.jpg'))
    return rotation_img

4、随机颜色 

def randomColor(root_path, img_name): #随机颜色
    """
    对图像进行颜色抖动
    :param image: PIL的图像image
    :return: 有颜色色差的图像image
    """
    image = Image.open(os.path.join(root_path, img_name))
    random_factor = np.random.randint(0, 31) / 10.  # 随机因子
    color_image = ImageEnhance.Color(image).enhance(random_factor)  # 调整图像的饱和度
    random_factor = np.random.randint(10, 21) / 10.  # 随机因子
    brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor)  # 调整图像的亮度
    random_factor = np.random.randint(10, 21) / 10.  # 随机因子
    contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor)  # 调整图像对比度
    random_factor = np.random.randint(0, 31) / 10.  # 随机因子
    return ImageEnhance.Sharpness(contrast_image).enhance(random_factor)  # 调整图像锐度

5、对比度增强


def contrastEnhancement(root_path,img_name):#对比度增强
    image = Image.open(os.path.join(root_path, img_name))
    enh_con = ImageEnhance.Contrast(image)
    contrast = 1.5
    image_contrasted = enh_con.enhance(contrast)
    return image_contrasted

 

6、亮度增强 

def brightnessEnhancement(root_path,img_name):#亮度增强
    image = Image.open(os.path.join(root_path, img_name))
    enh_bri = ImageEnhance.Brightness(image)
    brightness = 1.5
    image_brightened = enh_bri.enhance(brightness)
    return image_brightened

7、颜色增强

def colorEnhancement(root_path,img_name):#颜色增强
    image = Image.open(os.path.join(root_path, img_name))
    enh_col = ImageEnhance.Color(image)
    color = 1.5
    image_colored = enh_col.enhance(color)
    return image_colored

三、工程具体实现代码

注意: 

1、将下列代码中flip函数换成你要实现的数据增强方法的名字即可。

2、包含的库必须要包含

from PIL import Image
from PIL import ImageEnhance
import os
import cv2
import numpy as np
imageDir="C:/Users/Administrator/Desktop/right/" #要改变的图片的路径文件夹
saveDir="C:/Users/Administrator/Desktop/save/"   #要保存的图片的路径文件夹
i=0
for name in os.listdir(imageDir):
    i=i+1
    saveName="car"+str(i)+".jpg"
    saveImage=flip(imageDir,name)
    saveImage.save(os.path.join(saveDir,saveName))

 

 

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值