在训练模型的时候,经常会出现数据不够多,如此就会出现过拟合等问题,通过对训练图片进行变换可以得到泛化能力更强的网络,更好的适应应用场景。博主用自己项目中常用的一些方法代码写出来。
一、数据增强方法总结
1、平移。在图像平面上对图像以一定方式进行平移。
2、翻转图像。沿着水平或者垂直方向翻转图像。
3、旋转角度。随机旋转图像一定角度; 改变图像内容的朝向。
4、随机颜色。对图像进行颜色抖动,对图像的每个像素RGB进行随机扰动, 常用的噪声模式是椒盐噪声和高斯噪声。
5、对比度增强。增强图像对比度,也可以用直方图均衡化。
6、亮度增强。将整个图像亮度调高。
7、颜色增强。
8、还有随机裁剪、尺度变换等代码就不赘述了。
二、数据增强方法代码
1、平移
from PIL import Image
from PIL import ImageEnhance
import os
import cv2
import numpy as np
def move(root_path,img_name,off): #平移,平移尺度为off
img = Image.open(os.path.join(root_path, img_name))
offset = img.offset(off,0)
return offset
2、翻转图像
def flip(root_path,img_name): #翻转图像
img = Image.open(os.path.join(root_path, img_name))
filp_img = img.transpose(Image.FLIP_LEFT_RIGHT)
# filp_img.save(os.path.join(root_path,img_name.split('.')[0] + '_flip.jpg'))
return filp_img
3、旋转角度
def rotation(root_path, img_name):
img = Image.open(os.path.join(root_path, img_name))
rotation_img = img.rotate(20) #旋转角度
# rotation_img.save(os.path.join(root_path,img_name.split('.')[0] + '_rotation.jpg'))
return rotation_img
4、随机颜色
def randomColor(root_path, img_name): #随机颜色
"""
对图像进行颜色抖动
:param image: PIL的图像image
:return: 有颜色色差的图像image
"""
image = Image.open(os.path.join(root_path, img_name))
random_factor = np.random.randint(0, 31) / 10. # 随机因子
color_image = ImageEnhance.Color(image).enhance(random_factor) # 调整图像的饱和度
random_factor = np.random.randint(10, 21) / 10. # 随机因子
brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor) # 调整图像的亮度
random_factor = np.random.randint(10, 21) / 10. # 随机因子
contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor) # 调整图像对比度
random_factor = np.random.randint(0, 31) / 10. # 随机因子
return ImageEnhance.Sharpness(contrast_image).enhance(random_factor) # 调整图像锐度
5、对比度增强
def contrastEnhancement(root_path,img_name):#对比度增强
image = Image.open(os.path.join(root_path, img_name))
enh_con = ImageEnhance.Contrast(image)
contrast = 1.5
image_contrasted = enh_con.enhance(contrast)
return image_contrasted
6、亮度增强
def brightnessEnhancement(root_path,img_name):#亮度增强
image = Image.open(os.path.join(root_path, img_name))
enh_bri = ImageEnhance.Brightness(image)
brightness = 1.5
image_brightened = enh_bri.enhance(brightness)
return image_brightened
7、颜色增强
def colorEnhancement(root_path,img_name):#颜色增强
image = Image.open(os.path.join(root_path, img_name))
enh_col = ImageEnhance.Color(image)
color = 1.5
image_colored = enh_col.enhance(color)
return image_colored
三、工程具体实现代码
注意:
1、将下列代码中flip函数换成你要实现的数据增强方法的名字即可。
2、包含的库必须要包含
from PIL import Image
from PIL import ImageEnhance
import os
import cv2
import numpy as np
imageDir="C:/Users/Administrator/Desktop/right/" #要改变的图片的路径文件夹
saveDir="C:/Users/Administrator/Desktop/save/" #要保存的图片的路径文件夹
i=0
for name in os.listdir(imageDir):
i=i+1
saveName="car"+str(i)+".jpg"
saveImage=flip(imageDir,name)
saveImage.save(os.path.join(saveDir,saveName))